Sequence-specific solvent accessibilities of protein residues in unfolded protein ensembles

被引:38
作者
Bernado, Pau
Blackledge, Martin
Sancho, Javier
机构
[1] Inst Recerca Biomed, Barcelona 08028, Spain
[2] UJF, CEA, CNRS, Inst Biol Struct Jean Pierre Ebel, Grenoble, France
[3] Univ Zaragoza, Fac Ciencias, Dept Bioquim & Biol Mol & Celular, E-50009 Zaragoza, Spain
[4] Univ Zaragoza, Biocomputat & Complex Syst Phys Inst BIFI, E-50009 Zaragoza, Spain
关键词
D O I
10.1529/biophysj.106.087528
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Protein stability cannot be understood without the correct description of the unfolded state. We present here an efficient method for accurate calculation of atomic solvent exposures for denatured protein ensembles. The method used to generate the ensembles has been shown to reproduce diverse biophysical experimental data corresponding to natively and chemically unfolded proteins. Using a data set of 19 nonhomologous proteins containing from 98 to 579 residues, we report average accessibilities for all residue types. These averaged accessibilities are considerably lower than those previously reported for tripeptides and close to the lower limit reported by Creamer and co-workers. Of importance, we observe remarkable sequence dependence for the exposure to solvent of all residue types, which indicates that average residue solvent exposures can be inappropriate to interpret mutational studies. In addition, we observe smaller influences of both protein size and protein amino acid composition in the averaged residue solvent exposures for individual proteins. Calculating residue-specific solvent accessibilities within the context of real sequences is thus necessary and feasible. The approach presented here may allow a more precise parameterization of protein energetics as a function of polar- and apolar-area burial and opens new ways to investigate the energetics of the unfolded state of proteins.
引用
收藏
页码:4536 / 4543
页数:8
相关论文
共 52 条
[2]   Defining long-range order and local disorder in native α-synuclein using residual dipolar couplings [J].
Bernadó, P ;
Bertoncini, CW ;
Griesinger, C ;
Zweckstetter, M ;
Blackledge, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (51) :17968-17969
[3]   A structural model for unfolded proteins from residual dipolar couplings and small-angle x-ray scattering [J].
Bernadó, P ;
Blanchard, L ;
Timmins, P ;
Marion, D ;
Ruigrok, RWH ;
Blackledge, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (47) :17002-17007
[4]   Release of long-range tertiary interactions potentiates aggregation of natively unstructured α-synuclein [J].
Bertoncini, CW ;
Jung, YS ;
Fernandez, CO ;
Hoyer, W ;
Griesinger, C ;
Jovin, TM ;
Zweckstetter, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) :1430-1435
[5]   A double-deletion method to quantifying incremental binding energies in proteins from experiment:: Example of a destabilizing hydrogen bonding pair [J].
Campos, LA ;
Cuesta-López, S ;
López-Llano, J ;
Falo, F ;
Sancho, J .
BIOPHYSICAL JOURNAL, 2005, 88 (02) :1311-1321
[6]   STRUCTURAL INVARIANTS IN PROTEIN FOLDING [J].
CHOTHIA, C .
NATURE, 1975, 254 (5498) :304-308
[7]   PREDICTION OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
BIOCHEMISTRY, 1974, 13 (02) :222-245
[8]   Modeling unfolded states of proteins and peptides .2. Backbone solvent accessibility [J].
Creamer, TP ;
Srinivasan, R ;
Rose, GD .
BIOCHEMISTRY, 1997, 36 (10) :2832-2835
[9]   Modeling unfolded states of peptides and proteins [J].
Creamer, TP ;
Srinivasan, R ;
Rose, GD .
BIOCHEMISTRY, 1995, 34 (50) :16245-16250
[10]   Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations [J].
Dedmon, MM ;
Lindorff-Larsen, K ;
Christodoulou, J ;
Vendruscolo, M ;
Dobson, CM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (02) :476-477