Linear independence and stability of piecewise linear prewavelets on arbitrary triangulations

被引:14
作者
Floater, MS [1 ]
Quak, EG [1 ]
机构
[1] SINTEF Appl Math, N-0314 Oslo, Norway
关键词
wavelet spaces; prewavelets; piecewise linear splines; triangulations; local support; stability;
D O I
10.1137/S0036142998342628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish linear independence and stability of certain piecewise linear prewavelets over arbitrary bounded triangulations. These prewavelets are natural generalizations of the locally supported element constructed by Kotyczka and Oswald for an infinite three-directional mesh.
引用
收藏
页码:58 / 79
页数:22
相关论文
共 10 条
[1]  
Chui C.K., 1988, CBMS NSF REGIONAL C, V54
[2]   Swapping edges of arbitrary triangulations to achieve the optimal order of approximation [J].
Chui, CK ;
Hong, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (04) :1472-1482
[3]   Piecewise linear prewavelets on arbitrary triangulations [J].
Floater, MS ;
Quak, EG .
NUMERISCHE MATHEMATIK, 1999, 82 (02) :221-252
[4]  
FLOATER MS, 1999, APPROXIMATION THEO 9, V2, P63
[5]  
Hardy G., 1968, INEQUALITIES
[6]  
KOTYCZKA U, 1995, APPROXIMATION THEO 8, V2, P235
[7]  
LORENTZ R, 1996, 993 GMD
[8]  
Quak E., 1994, Applied and Computational Harmonic Analysis, V1, P217, DOI 10.1006/acha.1994.1009
[9]   A robust hierarchical basis preconditioner on general meshes [J].
Stevenson, R .
NUMERISCHE MATHEMATIK, 1997, 78 (02) :269-303
[10]  
STEVENSON R, 1998, MULTIGRID METHODS, V5, P306