Improving SCIPUFF Dispersion Forecasts with NWP Ensembles

被引:19
作者
Lee, Jared A. [2 ]
Peltier, L. Joel [1 ]
Haupt, Sue Ellen [1 ,2 ]
Wyngaard, John C. [2 ]
Stauffer, David R. [2 ]
Deng, Aijun [2 ]
机构
[1] Penn State Univ, Appl Res Lab, State Coll, PA 16804 USA
[2] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
关键词
MODEL; UNCERTAINTY; DIFFUSION; SENSITIVITY; SIMULATIONS; RESOLUTION; TRANSPORT; SYSTEM;
D O I
10.1175/2009JAMC2171.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The relationships between atmospheric transport and dispersion (AT&D) plume uncertainty and uncertainties in the transporting wind fields are investigated using the Second-Order Closure, Integrated Puff (SCIPUFF) AT&D model driven by numerical weather prediction (NWP) meteorological fields. Modeled contaminant concentrations for episode 1 of the 1983 Cross-Appalachian Tracer Experiment (CAPTEX-83) are compared with recorded ground-level concentrations of the inert tracer gas C7F14. This study evaluates a Taylor-diffusion-based parameterization of dispersion uncertainty for SCIPUFF that uses Eulerian meteorological ensemble velocity statistics and a Lagrangian integral time scale as input. These values are diagnosed from NWP ensemble data. Individual simulations of the tracer release fail to reproduce some of the monitored surface concentrations of the tracer. The plumes that are predicted using the uncertainty model in SCIPUFF are broader, improving the overlap between the predicted and observed results. Augmenting the meteorological input to SCIPUFF with meteorological ensemble-uncertainty parameters therefore provides both a better estimate of the expected plume location and the relative uncertainties in the predicted concentrations than single deterministic forecasts. These results suggest that this new parameterization of NWP wind field uncertainty for dispersion may provide more sophisticated information that may benefit emergency response and decision making.
引用
收藏
页码:2305 / 2319
页数:15
相关论文
共 51 条
[11]  
2
[12]  
FERBER JF, 1986, ARL142 NOAA ERL
[13]  
FOX DG, 1984, B AM METEOROL SOC, V65, P27, DOI 10.1175/1520-0477(1984)065<0027:UIAQM>2.0.CO
[14]  
2
[15]   Ensemble dispersion forecasting - Part I: concept, approach and indicators [J].
Galmarini, S ;
Bianconi, R ;
Klug, W ;
Mikkelsen, T ;
Addis, R ;
Andronopoulos, S ;
Astrup, P ;
Baklanov, A ;
Bartniki, J ;
Bartzis, JC ;
Bellasio, R ;
Bompay, F ;
Buckley, R ;
Bouzom, M ;
Champion, H ;
D'Amours, R ;
Davakis, E ;
Eleveld, H ;
Geertsema, GT ;
Glaab, H ;
Kollax, M ;
Ilvonen, M ;
Manning, A ;
Pechinger, U ;
Persson, C ;
Polreich, E ;
Potemski, S ;
Prodanova, M ;
Saltbones, J ;
Slaper, H ;
Sofiev, MA ;
Syrakov, D ;
Sorensen, JH ;
Van der Auwera, L ;
Valkama, I ;
Zelazny, R .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (28) :4607-4617
[16]   Ensemble dispersion forecasting - Part II: application and evaluation [J].
Galmarini, S ;
Bianconi, R ;
Addis, R ;
Andronopoulos, S ;
Astrup, P ;
Bartzis, JC ;
Bellasio, R ;
Buckley, R ;
Champion, H ;
Chino, M ;
D'Amours, R ;
Davakis, E ;
Eleveld, H ;
Glaab, H ;
Manning, A ;
Mikkelsen, T ;
Pechinger, U ;
Polreich, E ;
Prodanova, M ;
Slaper, H ;
Syrakov, D ;
Terada, H ;
Van der Auwera, L .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (28) :4619-4632
[17]  
GIFFORD FA, 1987, ATMOS ENVIRON, V21, P1315, DOI 10.1016/0004-6981(67)90078-9
[18]   HORIZONTAL DIFFUSION IN THE ATMOSPHERE - A LAGRANGIAN-DYNAMICAL THEORY [J].
GIFFORD, FA .
ATMOSPHERIC ENVIRONMENT, 1982, 16 (03) :505-512
[19]  
Grimit EP, 2002, WEATHER FORECAST, V17, P192, DOI 10.1175/1520-0434(2002)017<0192:IROAMS>2.0.CO
[20]  
2