RNA polymerase alters the mobility of an A-residue crucial to polymerase-induced melting of promoter DNA

被引:29
作者
Tsujikawa, L
Strainic, MG
Watrob, H
Barkley, MD
deHaseth, PL
机构
[1] Case Western Reserve Univ, Dept Chem, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Biochem, Cleveland, OH 44106 USA
关键词
D O I
10.1021/bi026539m
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Strand separation in promoter DNA induced by Escherichia coli RNA polymerase is likely initiated at a conserved A residue at position -11 of the nontemplate strand. Here, we describe the use of fluorescence techniques to study the interaction of RNA polymerase with the -11 base. Forked DNA templates were employed, containing the fluorescent base, 2-aminopurine (2AP), substituted at the -11 position in a single-stranded tail comprising the nucleotides on the nontemplate strand at which base pairing is disrupted in an RNA polymerase-promoter complex. We demonstrate that the presence of 2AP instead of an A at position -11 has no major effect on the accessibility of DNA to DNase I or KMnO4 in the presence or absence of RNA polymerase, thus justifying the use of templates containing the 2AP substitution in the fluorescence studies. A blue shift of the 2AP fluorescence emission maximum is observed in the presence of RNA polymerase. The results of fluorescence anisotropy decay studies indicate that about 60% of the 2AP residues at -11 are immobilized in an RNA polymerase complex. This value is in good agreement with the fraction of 2AP-substituted templates determined to be in a stable, heparin-resistant complex with RNA polymerase. These results are consistent with the residue at -11 being tightly bound in a hydrophobic pocket of the enzyme.
引用
收藏
页码:15334 / 15341
页数:8
相关论文
共 47 条
[1]   Targeted base stacking disruption by the EcoRI DNA methyltransferase [J].
Allan, BW ;
Reich, NO .
BIOCHEMISTRY, 1996, 35 (47) :14757-14762
[2]   Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase [J].
Beechem, JM ;
Otto, MR ;
Bloom, LB ;
Eritja, R ;
Reha-Krantz, LJ ;
Goodman, MF .
BIOCHEMISTRY, 1998, 37 (28) :10144-10155
[3]   A 2ND GENERATION GLOBAL ANALYSIS PROGRAM FOR THE RECOVERY OF COMPLEX INHOMOGENEOUS FLUORESCENCE DECAY KINETICS [J].
BEECHEM, JM .
CHEMISTRY AND PHYSICS OF LIPIDS, 1989, 50 (3-4) :237-251
[4]   KINETICS OF OPEN COMPLEX-FORMATION BETWEEN ESCHERICHIA-COLI RNA-POLYMERASE AND THE LAC UV5 PROMOTER - EVIDENCE FOR A SEQUENTIAL MECHANISM INVOLVING 3 STEPS [J].
BUC, H ;
MCCLURE, WR .
BIOCHEMISTRY, 1985, 24 (11) :2712-2723
[5]   PROCEDURE FOR RAPID, LARGE-SCALE PURIFICATION OF ESCHERICHIA-COLI DNA-DEPENDENT RNA-POLYMERASE INVOLVING POLYMIN-P PRECIPITATION AND DNA-CELLULOSE CHROMATOGRAPHY [J].
BURGESS, RR ;
JENDRISAK, JJ .
BIOCHEMISTRY, 1975, 14 (21) :4634-4638
[6]   Cyclobutylpyrimidine dimer base flipping by DNA photolyase [J].
Christine, KS ;
MacFarlane, AW ;
Yang, KS ;
Stanley, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (41) :38339-38344
[7]   DNA footprints of the two kinetically significant intermediates in formation of an RNA polymerase-promoter open complex: Evidence that interactions with start site and downstream DNA induce sequential conformational changes in polymerase and DNA [J].
Craig, ML ;
Tsodikov, OV ;
McQuade, KL ;
Schlax, PE ;
Capp, MW ;
Saecker, RM ;
Record, MT .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 283 (04) :741-756
[8]   RNA polymerase-promoter interactions: the comings and goings of RNA polymerase [J].
DeHaseth, PL ;
Zupancic, ML ;
Record, MT .
JOURNAL OF BACTERIOLOGY, 1998, 180 (12) :3019-3025
[9]   Function of the bacterial TATAAT-10 element as single-stranded DNA during RNA polymerase isomerization [J].
Fenton, MS ;
Gralla, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9020-9025
[10]   Escherichia coli promoter opening and-10 recognition:: mutational analysis of σ70 [J].
Fenton, MS ;
Lee, SJ ;
Gralla, JD .
EMBO JOURNAL, 2000, 19 (05) :1130-1137