Free-Energy Barriers and Reaction Mechanisms for the Electrochemical Reduction of CO on the Cu(100) Surface, Including Multiple Layers of Explicit Solvent at pH 0

被引:227
作者
Cheng, Tao [1 ]
Xiao, Hai [1 ]
Goddard, William A., III [1 ]
机构
[1] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2015年 / 6卷 / 23期
基金
美国国家科学基金会;
关键词
CARBON-DIOXIDE; MOLECULAR-DYNAMICS; METAL-ELECTRODES; ELECTROREDUCTION; EVOLUTION; METHANE; SIMULATION; INSIGHTS; MONOXIDE; TRENDS;
D O I
10.1021/acs.jpclett.5b02247
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The great interest in the photochemical reduction from CO2 to fuels and chemicals has focused attention on Cu because of its unique ability to catalyze formation of carbon-containing fuels and chemicals. A particular goal is to learn how to modify the Cu catalysts to enhance the production selectivity while reducing the energy requirements (overpotential). To enable such developments, we report here the free-energy reaction barriers and mechanistic pathways on the Cu(100) surface, which produces only CH4 (not C2H4 or CH3OH) in acid (pH 0). We predict a threshold potential for CH4 formation of -0.52 V, which compares well to experiments at low pH, -0.45 to -0.50 V. These quantum molecular dynamics simulations included similar to 5 layers of explicit water at the water/electrode interface using enhanced sampling methodology to obtain the free energies. We find that that chemisorbed hydroxyl-methylene (CH-OH) is the key intermediate determining the selectivity for methane over methanol.
引用
收藏
页码:4767 / 4773
页数:7
相关论文
共 54 条
[1]   Electrochemical Reduction of CO2 at Cu Nanocluster/(10(1)over-bar0) ZnO Electrodes [J].
Andrews, Evan ;
Ren, Maoming ;
Wang, Fei ;
Zhang, Ziyu ;
Sprunger, Phillip ;
Kurtz, Richard ;
Flake, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (11) :H841-H846
[2]   Selective Heterogeneous CO2 Electroreduction to Methanol [J].
Back, Seoin ;
Kim, Heejin ;
Jung, Yousung .
ACS CATALYSIS, 2015, 5 (02) :965-971
[3]   Oxygen reduction and hydrogen evolution-oxidation reactions on Cu(hkl) surfaces [J].
Brisard, G ;
Bertrand, N ;
Ross, PN ;
Markovic, NM .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 480 (1-2) :219-224
[4]   Theoretical Considerations on the Electroreduction of CO to C2 Species on Cu(100) Electrodes [J].
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (28) :7282-7285
[5]  
Carrasco J, 2012, NAT MATER, V11, P667, DOI [10.1038/NMAT3354, 10.1038/nmat3354]
[6]   CONSTRAINED REACTION COORDINATE DYNAMICS FOR THE SIMULATION OF RARE EVENTS [J].
CARTER, EA ;
CICCOTTI, G ;
HYNES, JT ;
KAPRAL, R .
CHEMICAL PHYSICS LETTERS, 1989, 156 (05) :472-477
[7]   Electrochemical Barriers Made Simple [J].
Chan, Karen ;
Norskov, Jens K. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (14) :2663-2668
[8]   Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires [J].
Chen, Zhengzheng ;
Zhang, Xu ;
Lu, Gang .
CHEMICAL SCIENCE, 2015, 6 (12) :6829-6835
[9]   A Local Proton Source Enhances CO2 Electroreduction to CO by a Molecular Fe Catalyst [J].
Costentin, Cyrille ;
Drouet, Samuel ;
Robert, Marc ;
Saveant, Jean-Michel .
SCIENCE, 2012, 338 (6103) :90-94
[10]   Tracing the minimum-energy path on the free-energy surface [J].
Fleurat-Lessard, P ;
Ziegler, T .
JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (08)