High-temperature operation of InAs-GaAs quantum-dot infrared photodetectors with large responsivity and detectivity

被引:156
作者
Chakrabarti, S
Stiff-Roberts, AD
Bhattacharya, P [1 ]
Gunapala, S
Bandara, S
Rafol, SB
Kennerly, SW
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Solid State Elect Lab, Ann Arbor, MI 48109 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] USA, Res Lab, Sensors & Electron Devices Directorate, Adelphi, MD 20783 USA
关键词
detectivity; InAs-GaAs; infrared detector; quantum dots; responsivity;
D O I
10.1109/LPT.2004.825974
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have optimized the growth of multiple (40-70) layers of self-organized InAs quantum dots separated by GaAs barrier layers in order to enhance the absorption of quantum-dot infrared photodetectors (QDIPs). In devices with 70 quantum-dot layers, at relatively large operating biases (less than or equal to -1.0 V), the dark current density is as low as 10(-5) A/cm(2) and the peak responsivity ranges from similar to0.1 to 0.3 A/W for temperatures T = 150 K - 175 K. The peak detectivity corresponding to these low dark currents and high responsivities varies in the range 6 x 10(9) less than or equal to D-* (cm . Hz(1/2)/W) less than or equal to 10(11) for temperatures 100 less than or equal to T(K) less than or equal to 200. These performance characteristics represent the state-of-the-art for QDIPs and indicate that this device heterostructure is appropriate for incorporation into focal plane arrays.
引用
收藏
页码:1361 / 1363
页数:3
相关论文
共 12 条
[1]   Mid-infrared photoconductivity in InAs quantum dots [J].
Berryman, KW ;
Lyon, SA ;
Segev, M .
APPLIED PHYSICS LETTERS, 1997, 70 (14) :1861-1863
[2]   Effect of strain relaxation on forward bias dark currents in GaAs/InGaAs multiquantum well p-i-n diodes [J].
Griffin, PR ;
Barnes, J ;
Barnham, KWJ ;
Haarpaintner, G ;
Mazzer, M ;
ZanottiFregonara, C ;
Grunbaum, E ;
Olson, C ;
Rohr, C ;
David, JPR ;
Roberts, JS ;
Grey, R ;
Pate, MA .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (10) :5815-5820
[3]   In0.6Ga0.4As/GaAs quantum-dot infrared photodetector with operating temperature up to 260 K [J].
Jiang, L ;
Li, SS ;
Yeh, NT ;
Chyi, JI ;
Ross, CE ;
Jones, KS .
APPLIED PHYSICS LETTERS, 2003, 82 (12) :1986-1988
[4]   Room temperature far infrared (8∼10 μm) photodetectors using self-assembled InAs quantum dots with high detectivity [J].
Kim, JW ;
Oh, JE ;
Hong, SC ;
Park, CH ;
Yoo, TK .
IEEE ELECTRON DEVICE LETTERS, 2000, 21 (07) :329-331
[5]   Absorption, carrier lifetime, and gain in InAs-GaAs quantum-dot infrared photodetectors [J].
Kochman, B ;
Stiff-Roberts, AD ;
Chakrabarti, S ;
Phillips, JD ;
Krishna, S ;
Singh, J ;
Bhattacharya, P .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (03) :459-467
[6]   Intersublevel transitions in InAs/GaAs quantum dots infrared photodetectors [J].
Maimon, S ;
Finkman, E ;
Bahir, G ;
Schacham, SE ;
Garcia, JM ;
Petroff, PM .
APPLIED PHYSICS LETTERS, 1998, 73 (14) :2003-2005
[7]   Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors [J].
Pan, D ;
Towe, E ;
Kennerly, S .
APPLIED PHYSICS LETTERS, 1998, 73 (14) :1937-1939
[8]   Self-assembled InAs-GaAs quantum-dot intersubband detectors [J].
Phillips, J ;
Bhattacharya, P ;
Kennerly, SW ;
Beekman, DW ;
Dutta, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1999, 35 (06) :936-943
[9]   Far-infrared photoconductivity in self-organized InAs quantum dots [J].
Phillips, J ;
Kamath, K ;
Bhattacharya, P .
APPLIED PHYSICS LETTERS, 1998, 72 (16) :2020-2022
[10]   High-responsivity, normal-incidence long-wave infrared (λ∼7.2 μm) InAs/In0.15Ga0.85As dots-in-a-well detector [J].
Raghavan, S ;
Rotella, P ;
Stintz, A ;
Fuchs, B ;
Krishna, S ;
Morath, C ;
Cardimona, DA ;
Kennerly, SW .
APPLIED PHYSICS LETTERS, 2002, 81 (08) :1369-1371