Some problems in multifractal spectrum computation using a statistical method

被引:11
作者
Chen, HP [1 ]
Sun, X
Chen, HX
Wu, ZQ
Wang, BH
机构
[1] Univ Sci & Technol China, Dept Astron & Appl Phys, Anhua 230026, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Anhua 230026, Peoples R China
[3] Shanxi Acad Agr Sci, Inst Soil & Fertilizer, Taiyuan 030031, Peoples R China
[4] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Peoples R China
来源
NEW JOURNAL OF PHYSICS | 2004年 / 6卷
关键词
D O I
10.1088/1367-2630/6/1/084
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In practical calculations of a multifractal spectrum only limited data are available due to data overflow, measurement errors and limited calculation time. An effective method to reduce the data overflow is proposed. Some parameters are introduced to evaluate the incomplete degree of a partial multifractal spectrum. Quantitative expressions of the evaluation parameters on the partial multifractal spectra calculated using a statistical method for the Cantor sets p/1 - 2p/p and p/0/1 - p are derived. Approximate evaluation parameters of the partial multifractal spectra calculated using the statistical method are estimated for two examples with a random fractal character. The characteristic of the evaluation parameters for the above examples is discussed in detail.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1996, FRACTAL PHYS
[2]   DETERMINATION OF F (ALPHA) FOR A LIMITED RANDOM POINT SET [J].
ATMANSPACHER, H ;
SCHEINGRABER, H ;
WIEDENMANN, G .
PHYSICAL REVIEW A, 1989, 40 (07) :3954-3963
[3]   Is the geometry of nature fractal? [J].
Avnir, D ;
Biham, O ;
Lidar, D ;
Malcai, O .
SCIENCE, 1998, 279 (5347) :39-40
[4]  
BADII R, 1985, J STAT PHYS, V40, P725, DOI 10.1007/BF01009897
[5]   MEASURING RENYI DIMENSIONS BY A MODIFIED BOX ALGORITHM [J].
BARTH, A ;
BAUMANN, G ;
NONNENMACHER, TF .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (02) :381-391
[6]   Correcting for finite spatial scales of self-similarity when calculating the fractal dimensions of real-world structures [J].
Berntson, GM ;
Stoll, P .
PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1997, 264 (1387) :1531-1537
[7]   EFFICIENT BOX-COUNTING DETERMINATION OF GENERALIZED FRACTAL DIMENSIONS [J].
BLOCK, A ;
VONBLOH, W ;
SCHELLNHUBER, HJ .
PHYSICAL REVIEW A, 1990, 42 (04) :1869-1874
[8]  
Feder J., 1988, Fractals. Physics of Solids and Liquids
[9]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[10]   AN EFFICIENT ALGORITHM FOR FAST O(N-STAR-IN(N)) BOX COUNTING [J].
HOU, XJ ;
GILMORE, R ;
MINDLIN, GB ;
SOLARI, HG .
PHYSICS LETTERS A, 1990, 151 (1-2) :43-46