The multishift QR algorithm.: part I:: Maintaining well-focused shifts and level 3 performance

被引:66
作者
Braman, K
Byers, R
Mathias, R
机构
[1] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
QR algorithm; implicit shifts; level; 3; BLAS; eigenvalues; eigenvectors;
D O I
10.1137/S0895479801384573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a small-bulge multishift variation of the multishift QR algorithm that avoids the phenomenon of shift blurring, which retards convergence and limits the number of simultaneous shifts. It replaces the large diagonal bulge in the multishift QR sweep with a chain of many small bulges. The small-bulge multishift QR sweep admits nearly any number of simultaneous shifts even hundreds without adverse effects on the convergence rate. With enough simultaneous shifts, the small-bulge multishift QR algorithm takes advantage of the level 3 BLAS, which is a special advantage for computers with advanced architectures.
引用
收藏
页码:929 / 947
页数:19
相关论文
共 63 条
[1]  
Anderson E., 1992, LAPACK User's Guide
[2]  
[Anonymous], TEST MATRIX COLLECTI
[3]   ON PARALLELIZABLE EIGENSOLVERS [J].
AUSLANDER, L ;
TSAO, A .
ADVANCES IN APPLIED MATHEMATICS, 1992, 13 (03) :253-261
[4]  
Bai Z., 1989, International Journal of High Speed Computing, V1, P97, DOI 10.1142/S0129053389000068
[5]  
BAI Z, 1995, 9511 U CAL DEP MATH
[6]   An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems [J].
Bai, ZJ ;
Demmel, J ;
Gu, M .
NUMERISCHE MATHEMATIK, 1997, 76 (03) :279-308
[7]  
BAI ZJ, 1993, PROCEEDINGS OF THE SIXTH SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, VOLS 1 AND 2, P391
[8]   CONVERGENCE OF THE SHIFTED QR ALGORITHM ON 3 X-3 NORMAL MATRICES [J].
BATTERSON, S .
NUMERISCHE MATHEMATIK, 1990, 58 (04) :341-352
[9]   CONVERGENCE OF THE FRANCIS SHIFTED QR ALGORITHM ON NORMAL MATRICES [J].
BATTERSON, S .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1994, 207 :181-195
[10]   LINEAR CONVERGENCE IN THE SHIFTED QR ALGORITHM [J].
BATTERSON, S ;
DAY, D .
MATHEMATICS OF COMPUTATION, 1992, 59 (199) :141-151