Highly permeable poly(4-methyl-1-pentyne)/NH2-MIL 53 (Al) mixed matrix membrane for CO2/CH4 separation

被引:101
作者
Abedini, Reza [1 ]
Omidkhah, Mohammadreza [1 ]
Dorosti, Fatereh [1 ]
机构
[1] Tarbiat Modares Univ, Fac Chem Engn, Tehran, Iran
来源
RSC ADVANCES | 2014年 / 4卷 / 69期
关键词
METAL-ORGANIC FRAMEWORK; GAS-SEPARATION; CARBON-DIOXIDE; MOF MEMBRANES; MIL-53; TRANSPORT; CO2; NH2-MIL-53(AL); ADSORPTION; COMBINATION;
D O I
10.1039/c4ra07030e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poly(4-methyl-1-pentyne) (PMP) as a polymer matrix together with synthesized NH2-MIL 53 metal organic framework (MOF) as a filler were used to fabricate a mixed matrix membrane (MMM). Various characterization methods as well as a series of CO2/CH4 gas separation tests (i.e. pure and mixed gas tests) were conducted in order to determine the effect of NH2-MIL 53 on the properties of the prepared MMMs and their gas transport characteristics. The results of TGA and DMA showed that both degradation temperature (T-d) and glass transition temperature (T-g) increased by increasing the NH2-MIL 53 loading. SEM images also demonstrated that uniform dispersion of NH2-MIL 53 particles in the PMP matrix was achieved with no noticeable voids in the polymer-filler interfaces. It was also found that incorporation of NH2-MIL 53 in PMP results in an increase of gas permeability (especially for CO2) and higher CO2/CH4 selectivity. In contrast with the increment of CO2 solubility due to the presence of MOF in the polymer matrix, the solubility of CH4 decreases. Although the CO2 solubility was improved with the addition of NH2-MIL 53, its diffusivity remained almost constant with no significant changes. Lastly, it was observed that increasing the MOF loading along with higher feed pressure provide a condition to overcome the Robeson upper bound.
引用
收藏
页码:36522 / 36537
页数:16
相关论文
共 54 条
[1]  
Abedini R., 2014, IRAN J POLYM SCI TEC, V27, P18
[2]   Hydrogen separation and purification with poly (4-methyl-1-pentyne)/MIL 53 mixed matrix membrane based on reverse selectivity [J].
Abedini, Reza ;
Omidkhah, Mohammadreza ;
Dorosti, Fatereh .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (15) :7897-7909
[3]   A novel cellulose acetate (CA) membrane using TiO2 nanoparticles: Preparation, characterization and permeation study [J].
Abedini, Reza ;
Mousavi, Seyed Mahmoud ;
Aminzadeh, Reza .
DESALINATION, 2011, 277 (1-3) :40-45
[4]   Synthesis and Modification of a Functionalized 3D Open-Framework Structure with MIL-53 Topology [J].
Ahnfeldt, Tim ;
Gunzelmann, Daniel ;
Loiseau, Thierry ;
Hirsemann, Dunja ;
Senker, Juergen ;
Ferey, Gerard ;
Stock, Norbert .
INORGANIC CHEMISTRY, 2009, 48 (07) :3057-3064
[5]   A High-Performance Gas-Separation Membrane Containing Submicrometer-Sized Metal-Organic Framework Crystals [J].
Bae, Tae-Hyun ;
Lee, Jong Suk ;
Qiu, Wulin ;
Koros, William J. ;
Jones, Christopher W. ;
Nair, Sankar .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (51) :9863-9866
[6]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[7]   MOF-containing mixed-matrix membranes for CO2/CH4 and CO2/N2 binary gas mixture separations [J].
Basu, Subhankar ;
Cano-Odena, Angels ;
Vankelecom, Ivo F. J. .
SEPARATION AND PURIFICATION TECHNOLOGY, 2011, 81 (01) :31-40
[8]   Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47 [J].
Bourrelly, S ;
Llewellyn, PL ;
Serre, C ;
Millange, F ;
Loiseau, T ;
Férey, G .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (39) :13519-13521
[9]   The Behavior of Flexible MIL-53(Al) upon CH4 and CO2 Adsorption [J].
Boutin, Anne ;
Coudert, Francois-Xavier ;
Springuel-Huet, Marie-Anne ;
Neimark, Alexander V. ;
Ferey, Gerard ;
Fuchs, Alain H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (50) :22237-22244
[10]   KINETICS OF CARBAMATE FORMATION AND BREAKDOWN [J].
CAPLOW, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1968, 90 (24) :6795-&