Modeling the potential distribution in porous anodic alumina films during steady-state growth

被引:56
作者
Houser, Jerrod E. [1 ]
Hebert, Kurt R. [1 ]
机构
[1] Iowa State Univ, Dept Chem & Biol Engn, Ames, IA 50011 USA
关键词
D O I
10.1149/1.2360763
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Porous anodic alumina (PAA) films, formed by anodic oxidation in acidic solutions, contain hexagonal arrays of parallel cylindrical pores, with pore diameter and spacing between ten and several hundred nanometers. Simulations were developed for the electrical potential distribution in the film during steady-state PAA growth, and used to calculate the rates of metal-film and film-solution interface motion. In particular, a model using the assumption of no space charge (Laplace's equation) and one based on the current continuity equation, in each case coupled with high-field ionic conduction, were evaluated with respect to the requirement that the interface profiles are time invariant. Laplace's equation, on which prior simulations of PAA growth were based, yielded unrealistic behavior with highly nonuniform interface motion, suggesting the presence of significant space charge. In contrast, interface motion predicted by the current continuity equation was uniform, except near convex ridges on the metal-film interface between pores. To fully rationalize the steady-state PAA geometry, phenomena other than conduction should be considered, which are able to provide inhibition of the oxidation rate on these ridges. (c) 2006 The Electrochemical Society.
引用
收藏
页码:B566 / B573
页数:8
相关论文
共 27 条
[1]   MODELING OF A GROWING OXIDE FILM - THE IRON IRON-OXIDE SYSTEM [J].
BATTAGLIA, V ;
NEWMAN, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1995, 142 (05) :1423-1430
[2]   USE OF RUTHERFORD BACKSCATTERING TO STUDY BEHAVIOR OF ION-IMPLANTED ATOMS DURING ANODIC-OXIDATION OF ALUMINUM - AR, KR, XE, K, RB, CS, CL, BR, AND I [J].
BROWN, F ;
MACKINTOSH, WD .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1973, 120 (08) :1096-1102
[3]   Hydration of passive oxide films on aluminum [J].
Bunker, BC ;
Nelson, GC ;
Zavadil, KR ;
Barbour, JC ;
Wall, FD ;
Sullivan, JP ;
Windisch, CF ;
Engelhardt, MH ;
Baer, DR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (18) :4705-4713
[4]   STUDY BY NUCLEAR MICROANALYSIS AND O-18 TRACER TECHNIQUES OF OXYGEN-TRANSPORT PROCESSES AND GROWTH LAWS FOR POROUS ANODIC OXIDE LAYERS ON ALUMINUM [J].
CHERKI, C ;
SIEJKA, J .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1973, 120 (06) :784-791
[5]   ANODIC OXIDE FILMS ON ALUMINUM [J].
DIGGLE, JW ;
DOWNIE, TC ;
GOULDING, CW .
CHEMICAL REVIEWS, 1969, 69 (03) :365-&
[6]  
EBIHARA K, 1984, J METAL FIN SOC JPN, V35, P205
[7]   A MECHANISM FOR THE FORMATION OF POROUS ANODIC OXIDE FILMS ON ALUMINIUM [J].
HOAR, TP ;
MOTT, NF .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1959, 9 (02) :97-99
[8]   Evidence for interstitial hydrogen as the dominant electronic defect in nanometer alumina films [J].
Jennison, DR ;
Schultz, PA ;
Sullivan, JP .
PHYSICAL REVIEW B, 2004, 69 (04)
[9]   STRUCTURAL FEATURES OF OXIDE COATINGS ON ALUMINIUM [J].
KELLER, F ;
HUNTER, MS ;
ROBINSON, DL .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1953, 100 (09) :411-419
[10]   GROWTH-KINETICS OF PASSIVE FILMS [J].
KIRCHHEIM, R .
ELECTROCHIMICA ACTA, 1987, 32 (11) :1619-1629