Resummation of anisotropic quartic oscillator: Crossover from anisotropic to isotropic large-order behavior

被引:19
作者
Kleinert, H [1 ]
Thoms, S [1 ]
Janke, W [1 ]
机构
[1] UNIV MAINZ, INST PHYS, D-55099 MAINZ, GERMANY
来源
PHYSICAL REVIEW A | 1997年 / 55卷 / 02期
关键词
D O I
10.1103/PhysRevA.55.915
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an approximative calculation of the ground-state energy for the ani V(x,y)=omega(2)/2(x(2)+y(2))+g/4[x(4)+2(1-delta)x(2)y(2)+y(4)]. Using an instanton solution for the isotropic limit delta=0, we obtain the imaginary part of the ground-state energy for small negative g as a series expansion in the anisotropy parameter delta. From this, the large-order behavior of the g expansions accompanying each power of delta are obtained by means of a dispersion relation in g. The g expansions are summed by a Borel transformation, yielding an approximation to the ground-state energy for the region near the isotropic limit. This approximation is found to be excellent in a rather wide region of delta around delta=0. Special attention is devoted to the immediate vicinity of the isotropy point. Using a simple model integral we show that the large-order behavior of a delta-dependent series expansion in g undergoes. a crossover from an isotropic to an anisotropic regime as the order k of the expansion coefficients passes the value k(cross)similar to 1/\delta\.
引用
收藏
页码:915 / 928
页数:14
相关论文
共 39 条
[1]  
Abramowitz M., 1965, Handbook of Mathematical Functions, Dover Books on Mathematics
[2]   CRITICAL BEHAVIOR OF ANISOTROPIC CUBIC SYSTEMS [J].
AHARONY, A .
PHYSICAL REVIEW B, 1973, 8 (09) :4270-4273
[3]   COUPLED ANHARMONIC OSCILLATORS .1. EQUAL MASS CASE [J].
BANKS, T ;
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 8 (10) :3346-3366
[4]   COUPLED ANHARMONIC OSCILLATORS .2. UNEQUAL-MASS CASE [J].
BANKS, T ;
BENDER, CM .
PHYSICAL REVIEW D, 1973, 8 (10) :3366-3378
[5]   CONVERGENCE OF THE OPTIMIZED DELTA-EXPANSION FOR THE CONNECTED VACUUM AMPLITUDE - ZERO DIMENSIONS [J].
BENDER, CM ;
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1994, 49 (08) :4219-4225
[6]   ANHARMONIC OSCILLATOR .2. STUDY OF PERTURBATION-THEORY IN LARGE ORDER [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW D, 1973, 7 (06) :1620-1636
[7]   ANHARMONIC OSCILLATOR [J].
BENDER, CM ;
WU, TT .
PHYSICAL REVIEW, 1969, 184 (05) :1231-&
[8]   DISCUSSION OF CRITICAL PHENOMENA FOR GENERAL NORMAL-VECTOR MODELS [J].
BREZIN, E ;
LEGUILLO.JC ;
ZINNJUST.J .
PHYSICAL REVIEW B, 1974, 10 (03) :892-900
[9]   PROOF OF THE CONVERGENCE OF THE LINEAR DELTA-EXPANSION - ZERO DIMENSIONS [J].
BUCKLEY, IRC ;
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2554-2559
[10]   CONVERGENCE PROOF FOR OPTIMIZED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR [J].
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2560-2572