CONVERGENCE OF THE OPTIMIZED DELTA-EXPANSION FOR THE CONNECTED VACUUM AMPLITUDE - ZERO DIMENSIONS

被引:84
作者
BENDER, CM
DUNCAN, A
JONES, HF
机构
[1] UNIV PITTSBURGH,DEPT PHYS & ASTRON,PITTSBURGH,PA 15260
[2] UNIV LONDON IMPERIAL COLL SCI TECHNOL & MED,DEPT PHYS,LONDON SW7 2BZ,ENGLAND
来源
PHYSICAL REVIEW D | 1994年 / 49卷 / 08期
关键词
D O I
10.1103/PhysRevD.49.4219
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Recent proofs of the convergence of the linear delta expansion in zero and one dimension have been limited to the analogue of the vacuum generating functional in field theory. In zero dimensions it was shown that with an appropriate, N-dependent, choice of an optimizing parameter lambda, which is an important feature of the method, the sequence of approximants Z(N) tends to Z with an error proportional to e(-cN). In the present paper we establish the convergence of the linear delta expansion for the connected vacuum function W = lnZ. We show that with the same choice of lambda the corresponding sequence W(N) tends to W with an error proportional to e(-c square-root N). The rate of convergence of the latter sequence is governed by the positions of the zeros of Z(N).
引用
收藏
页码:4219 / 4225
页数:7
相关论文
共 17 条
[1]  
Arnold V. I., 1980, MATH METHODS CLASSIC, P225
[2]   ANALYTIC CONTINUATION OF EIGENVALUE PROBLEMS [J].
BENDER, CM ;
TURBINER, A .
PHYSICS LETTERS A, 1993, 173 (06) :442-446
[3]   NOVEL PERTURBATIVE SCHEME IN QUANTUM-FIELD THEORY [J].
BENDER, CM ;
MILTON, KA ;
MOSHE, M ;
PINSKY, SS ;
SIMMONS, LM .
PHYSICAL REVIEW D, 1988, 37 (06) :1472-1484
[4]   PROOF OF THE CONVERGENCE OF THE LINEAR DELTA-EXPANSION - ZERO DIMENSIONS [J].
BUCKLEY, IRC ;
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2554-2559
[5]  
CASWELL WE, 1979, ANN PHYS-NEW YORK, V123, P153, DOI 10.1016/0003-4916(79)90269-0
[6]   COMPARISON OF SOME VARIATIONAL STRATEGIES USED IN FIELD-THEORY [J].
COOPER, F ;
JONES, HF ;
SIMMONS, LM .
PHYSICAL REVIEW D, 1991, 43 (10) :3396-3399
[7]   NONPERTURBATIVE PHYSICS FROM INTERPOLATING ACTIONS [J].
DUNCAN, A ;
MOSHE, M .
PHYSICS LETTERS B, 1988, 215 (02) :352-358
[8]   CONVERGENCE PROOF FOR OPTIMIZED DELTA-EXPANSION - ANHARMONIC-OSCILLATOR [J].
DUNCAN, A ;
JONES, HF .
PHYSICAL REVIEW D, 1993, 47 (06) :2560-2572
[9]   ANHARMONIC-OSCILLATOR - A NEW APPROACH [J].
HALLIDAY, IG ;
SURANYI, P .
PHYSICAL REVIEW D, 1980, 21 (06) :1529-1537
[10]   CONVERGENT PERTURBATION SERIES FOR THE ANHARMONIC-OSCILLATOR [J].
HALLIDAY, IG ;
SURANYI, P .
PHYSICS LETTERS B, 1979, 85 (04) :421-423