Decay of unstable equilibrium and nonequilibrium states with inverse probability current taken into account

被引:46
作者
Agudov, NV [1 ]
Malakhov, AN [1 ]
机构
[1] State Univ Nizhny Novgorod, Radiophys Dept, Nizhnii Novgorod 603600, Russia
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 06期
关键词
D O I
10.1103/PhysRevE.60.6333
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the causes of noise delayed decay of unstable states in nonlinear dynamic systems within the framework of the overdamped Brownian motion model. For the analysis, we use the exact expressions for the decay times of unstable states, which take into account the inverse probability current in contrast to the well-known mean first passage time method. These expressions are valid for any intensity of fluctuations and for arbitrary potential profiles. The effect of delay is shown to arise under the decay of unstable nonequilibrium stares due to the action of two different mechanisms. These mechanisms are caused by the inverse probability current and by the nonlinearity of potential describing an unstable state. [S1063-651X(99)10111-9].
引用
收藏
页码:6333 / 6342
页数:10
相关论文
共 42 条
[11]   PHASE-TRANSITIONS IN A NONLINEAR STOCHASTIC-MODEL - A NUMERICAL-SIMULATION STUDY [J].
CASADO, JM ;
MORILLO, M .
PHYSICAL REVIEW A, 1990, 42 (04) :1875-1879
[12]   NONLINEAR RELAXATION IN THE PRESENCE OF AN ABSORBING BARRIER [J].
CIUCHI, S ;
DEPASQUALE, F ;
SPAGNOLO, B .
PHYSICAL REVIEW E, 1993, 47 (06) :3915-3926
[13]   RELAXATION FROM A MARGINAL STATE IN OPTICAL BISTABILITY [J].
COLET, P ;
SANMIGUEL, M ;
CASADEMUNT, J ;
SANCHO, JM .
PHYSICAL REVIEW A, 1989, 39 (01) :149-156
[14]   RELAXATION IN THE SUBCRITICAL PITCHFORK BIFURCATION - FROM CRITICAL TO GAUSSIAN SCALING [J].
COLET, P ;
DEPASQUALE, F ;
MIGUEL, MS .
PHYSICAL REVIEW A, 1991, 43 (10) :5296-5307
[15]   FLUCTUATIONS AND SIMPLE CHAOTIC DYNAMICS [J].
CRUTCHFIELD, JP ;
FARMER, JD ;
HUBERMAN, BA .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1982, 92 (02) :45-82
[16]   STOCHASTIC RESONANCE IN TRANSIENT DYNAMICS [J].
DAYAN, I ;
GITTERMAN, M ;
WEISS, GH .
PHYSICAL REVIEW A, 1992, 46 (02) :757-761
[17]   TIME BEHAVIOR OF NON-LINEAR STOCHASTIC-PROCESSES IN THE PRESENCE OF MULTIPLICATIVE NOISE - FROM KRAMERS TO SUZUKI DECAY [J].
FAETTI, S ;
GRIGOLINI, P ;
MARCHESONI, F .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1982, 47 (04) :353-363
[18]   STOCHASTIC-ANALYSIS OF EXPLOSIVE BEHAVIOR - A QUALITATIVE APPROACH [J].
FRANKOWICZ, M ;
MANSOUR, MM ;
NICOLIS, G .
PHYSICA A, 1984, 125 (01) :237-246
[19]   TRANSIENT EVOLUTION TOWARDS A UNIQUE STABLE STATE - STOCHASTIC-ANALYSIS OF EXPLOSIVE BEHAVIOR IN A CHEMICAL-SYSTEM [J].
FRANKOWICZ, M ;
NICOLIS, G .
JOURNAL OF STATISTICAL PHYSICS, 1983, 33 (03) :595-609
[20]  
Gardiner C. W., 1985, HDB STOCHASTIC METHO, V3