Replication fork regression in repetitive DNAs

被引:74
作者
Fouche, Nicole [1 ]
Ozgur, Sezgin [1 ]
Roy, Debasmita [1 ]
Griffith, Jack D. [1 ]
机构
[1] Univ N Carolina, Dept Biochem & Biophys, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
关键词
D O I
10.1093/nar/gkl757
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Among several different types of repetitive sequences found in the human genome, this study has examined the telomeric repeat, necessary for the protection of chromosome termini, and the disease-associated triplet repeat (CTG).(CAG)(n). Evidence suggests that replication of both types of repeats is problematic and that a contributing factor is the repetitive nature of the DNA itself. Here we have used electron microscopy to investigate DNA structures formed at replication forks on large model DNAs containing these repeat sequences, in an attempt to elucidate the contributory effect that these repetitive DNAs may have on their replication. Visualization of the DNA revealed that there is a high propensity for a paused replication fork to spontaneously regress when moving through repetitive DNAs, and that this results in a four-way chickenfoot intermediate that could present a significant block to replication in vivo, possibly leading to unwanted recombination events, amplifications or deletions.
引用
收藏
页码:6044 / 6050
页数:7
相关论文
共 49 条
[1]   Breakpoints of gross deletions coincide with non-B DNA conformations [J].
Bacolla, A ;
Jaworski, A ;
Larson, JE ;
Jakupciak, JP ;
Chuzhanova, N ;
Abeysinghe, SS ;
O'Connell, CD ;
Cooper, DN ;
Wells, RD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (39) :14162-14167
[2]   Telomere instability in a human tumor cell line expressing a dominant-negative WRN protein [J].
Bai, YL ;
Murnane, JP .
HUMAN GENETICS, 2003, 113 (04) :337-347
[3]   Telomeres and telomerase: their mechanisms of action and the effects of altering their functions [J].
Blackburn, EH .
FEBS LETTERS, 2005, 579 (04) :859-862
[4]   TELOMERE ELONGATION IN IMMORTAL HUMAN-CELLS WITHOUT DETECTABLE TELOMERASE ACTIVITY [J].
BRYAN, TM ;
ENGLEZOU, A ;
GUPTA, J ;
BACCHETTI, S ;
REDDEL, RR .
EMBO JOURNAL, 1995, 14 (17) :4240-4248
[5]   Evidence for an alternative mechanism for maintaining telomere length in human tumors and tumor-derived cell lines [J].
Bryan, TM ;
Englezou, A ;
DallaPozza, L ;
Dunham, MA ;
Reddel, RR .
NATURE MEDICINE, 1997, 3 (11) :1271-1274
[6]   Werner's syndrome protein (WRN) migrates Holliday junctions and co-localizes with RPA upon replication arrest [J].
Constantinou, A ;
Tarsounas, M ;
Karow, JK ;
Brosh, RM ;
Bohr, VA ;
Hickson, ID ;
West, SC .
EMBO REPORTS, 2000, 1 (01) :80-84
[7]   Defective telomere lagging strand synthesis in cells lacking WRN helicase activity [J].
Crabbe, L ;
Verdun, RE ;
Haggblom, CI ;
Karlseder, J .
SCIENCE, 2004, 306 (5703) :1951-1953
[8]   Shelterin: the protein complex that shapes and safeguards human telomeres [J].
de Lange, T .
GENES & DEVELOPMENT, 2005, 19 (18) :2100-2110
[9]   Regulation of murine telomere length by Rtel:: An essential gene encoding a helicase-like protein [J].
Ding, H ;
Schertzer, M ;
Wu, XL ;
Gertsenstein, M ;
Selig, S ;
Kammori, M ;
Pourvali, R ;
Poon, S ;
Vulto, I ;
Chavez, E ;
Tam, PPL ;
Nagy, A ;
Lansdorp, PM .
CELL, 2004, 117 (07) :873-886
[10]   Human Werner syndrome DNA helicase unwinds tetrahelical structures of the fragile X syndrome repeat sequence d(CGG)n [J].
Fry, M ;
Loeb, LA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (18) :12797-12802