Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation

被引:64
作者
Lee, PA
Buchanan, G
Stanley, NR
Berks, BC
Palmer, T [1 ]
机构
[1] John Innes Ctr Plant Sci Res, Dept Mol Microbiol, Norwich NR4 7UH, Norfolk, England
[2] Univ E Anglia, Sch Biol Sci, Ctr Met Prot Spect & Biol, Norwich NR4 7TJ, Norfolk, England
[3] Univ Oxford, Dept Biochem, Oxford OX1 3QU, England
关键词
D O I
10.1128/JB.184.21.5871-5879.2002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The TatA and TatB proteins are essential components of the twin arginine protein translocation pathway in Escherichia coli. C-terminal truncation analysis of the TatA protein revealed that a plasmid-expressed TatA protein shortened by 40 amino acids is still fully competent to support protein translocation. Similar truncation analysis of TatB indicated that the final 30 residues of TatB are dispensable for function. Further deletion experiments with TatB indicated that removal of even 70 residues from its C terminus still allowed significant transport. These results imply that the transmembrane and amphipathic helical regions of TatA and TatB are critical for their function but that the C-terminal domains are not essential for Tat transport activity. A chimeric protein comprising the N-terminal region of TatA fused to the amphipathic and C-terminal domains of TatB supports a low level of Tat activity in a strain in which the wild-type copy of either tatA or tatB (but not both) is deleted.
引用
收藏
页码:5871 / 5879
页数:9
相关论文
共 34 条
[1]   CONSTRUCTION AND PROPERTIES OF A FAMILY OF PACYC184-DERIVED CLONING VECTORS COMPATIBLE WITH PBR322 AND ITS DERIVATIVES [J].
BARTOLOME, B ;
JUBETE, Y ;
MARTINEZ, E ;
DELACRUZ, F .
GENE, 1991, 102 (01) :75-78
[2]   The Tat protein export pathway [J].
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2000, 35 (02) :260-274
[3]   A common export pathway for proteins binding complex redox cofactors? [J].
Berks, BC .
MOLECULAR MICROBIOLOGY, 1996, 22 (03) :393-404
[4]   An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria [J].
Bogsch, EG ;
Sargent, F ;
Stanley, NR ;
Berks, BC ;
Robinson, C ;
Palmer, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (29) :18003-18006
[5]   TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli [J].
Bolhuis, A ;
Mathers, JE ;
Thomas, JD ;
Barrett, CML ;
Robinson, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (23) :20213-20219
[6]   Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis [J].
Buchanan, G ;
de Leeuw, E ;
Stanley, NR ;
Wexler, M ;
Berks, BC ;
Sargent, F ;
Palmer, T .
MOLECULAR MICROBIOLOGY, 2002, 43 (06) :1457-1470
[7]  
CASADABAN MJ, 1979, P NATL ACAD SCI USA, V76, P4530, DOI 10.1073/pnas.76.9.4530
[8]   Thylakoid ΔpH-dependent precursor proteins bind to a cpTatC-Hcf106 complex before Tha4-dependent transport [J].
Cline, K ;
Mori, H .
JOURNAL OF CELL BIOLOGY, 2001, 154 (04) :719-729
[9]  
COHEN G N, 1956, Ann Inst Pasteur (Paris), V91, P693
[10]   Membrane interactions and self-association of the TatA and TatB components of the twin-arginine translocation pathway [J].
De Leeuw, E ;
Porcelli, I ;
Sargent, F ;
Palmer, T ;
Berks, BC .
FEBS LETTERS, 2001, 506 (02) :143-148