Effective stochastic dynamics on a protein folding energy landscape

被引:62
作者
Yang, Sichun [1 ]
Onuchic, Jose N.
Levine, Herbert
机构
[1] Univ Calif San Diego, Ctr Theoret Biol Phys, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.2229206
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an approach to protein folding kinetics using stochastic reaction-coordinate dynamics, in which the effective drift velocities and diffusion coefficients are determined from microscopic simulation data. The resultant Langevin equation can then be used to directly simulate the folding process. Here, we test this approach by applying it to a toy two-state dynamical system and to a funnellike structure-based (G (o) over bar -type) model. The folding time predictions agree very well with full simulation results. Therefore, we have in hand a fast numerical tool for calculating the folding kinetic properties, even when full simulations are not feasible. In addition, the local drift and diffusion coefficients provide an alternative way to compute the free energy profile in cases where only local sampling can be achieved. (c) 2006 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 39 条
[1]   One-dimensional reaction coordinates for diffusive activated rate processes in many dimensions [J].
Berezhkovskii, A ;
Szabo, A .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (01)
[2]   SPIN-GLASSES AND THE STATISTICAL-MECHANICS OF PROTEIN FOLDING [J].
BRYNGELSON, JD ;
WOLYNES, PG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (21) :7524-7528
[3]   Quantifying the roughness on the free energy landscape: Entropic bottlenecks and protein folding rates [J].
Chavez, LL ;
Onuchic, JN ;
Clementi, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (27) :8426-8432
[4]   Protein folding mediated by solvation:: Water expulsion and formation of the hydrophobic core occur after the structural collapse [J].
Cheung, MS ;
García, AE ;
Onuchic, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (02) :685-690
[5]   Topological and energetic factors: What determines the structural details of the transition state ensemble and "en-route" intermediates for protein folding? An investigation for small globular proteins [J].
Clementi, C ;
Nymeyer, H ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 298 (05) :937-953
[6]   From Levinthal to pathways to funnels [J].
Dill, KA ;
Chan, HS .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (01) :10-19
[7]   NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1988, 61 (23) :2635-2638
[8]   Folding a protein in a computer:: An atomic description of the folding/unfolding of protein A [J].
García, AE ;
Onuchic, JN .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (24) :13898-13903
[9]  
Gardiner C., 2010, STOCHASTIC METHODS H
[10]   Topological frustration and the folding of interleukin-1β [J].
Gosavi, S ;
Chavez, LL ;
Jennings, PA ;
Onuchic, JN .
JOURNAL OF MOLECULAR BIOLOGY, 2006, 357 (03) :986-996