A 15-residue bifunctional element in D-AKAP1 is required for both endoplasmic reticulum and mitochondrial targeting

被引:34
作者
Ma, YL
Taylor, S
机构
[1] Univ Calif San Diego, Howard Hughes Med Inst, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Chem & Biochem, La Jolla, CA 92093 USA
关键词
D O I
10.1074/jbc.M201421200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The cAMP-dependent protein kinase anchoring protein, D-AKAP1, has two N-terminal splice variants. The shorter forms (NO, D-AKAP1a, and -1c) target to mitochondria, and the longer forms (N1, D-AKAP1b, and -1d) with 33 additional residues N-terminal to NO target to the endoplasmic reticulum (ER) (Huang, L. J., Wang, L., Ma, Y., Durick, K., Perkins, G., Deerinck, T. J., Ellisman, M. H., and Taylor, S. S. (1999) J. Cell Biol. 145, 951-959). In D-AKAP1a, translation may initiate from both Met-34 or Met-49 producing two molecules both targeted to mitochondria. The shorter molecule contains the 15-residue targeting motif, homologous to the N-terminal mitochondrial targeting motif of hexokinase I. Extensive mutagenesis showed that one hydrophobic surface of the 15-residue hexokinase-homologous segment contained the key elements for mitochondrial targeting. The same 15 residues are also part of the ER-targeting signal, but for ER targeting multiple hydrophobic residues are required that encompass both surfaces of the helix. The different involvement of the same helical motif for targeting to the two organelles appears to reflect different modes of interaction with the two organelles. This is the first example of a bifunctional helical element that is required for both ER and mitochondrion targeting.
引用
收藏
页码:27328 / 27336
页数:9
相关论文
共 47 条
[21]  
Ma Y, 1999, CANCER RES, V59, P5341
[22]   Generation of deletion and point mutations with one primer in a single cloning [J].
Makarova, O ;
Kamberov, E ;
Margolis, B .
BIOTECHNIQUES, 2000, 29 (05) :970-972
[23]  
McKnight GS, 1991, CURR OPIN CELL BIOL, V3, P213
[24]   SIGNAL-TRANSDUCTION THROUGH THE CAMP-DEPENDENT PROTEIN-KINASE [J].
MEINKOTH, JL ;
ALBERTS, AS ;
WENT, W ;
FANTOZZI, D ;
TAYLOR, SS ;
HAGIWARA, M ;
MONTMINY, M ;
FERAMISCO, JR .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 1993, 128 :179-186
[25]   Identification of tethering domains for protein kinase A type Iα regulatory subunits on sperm fibrous sheath protein FSC1 [J].
Miki, E ;
Eddy, EM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (51) :34384-34390
[26]   Transcriptional regulation by cyclic AMP [J].
Montminy, M .
ANNUAL REVIEW OF BIOCHEMISTRY, 1997, 66 :807-822
[27]   The structure of mammalian hexokinase-1 [J].
Mulichak, AM ;
Wilson, JE ;
Padmanabhan, K ;
Garavito, RM .
NATURE STRUCTURAL BIOLOGY, 1998, 5 (07) :555-560
[28]   Signaling through scaffold, anchoring, and adaptor proteins [J].
Pawson, T ;
Scott, JD .
SCIENCE, 1997, 278 (5346) :2075-2080
[29]   Flow cytometric analysis of the cell cycle in transfected cells without cell fixation [J].
Pestov, DG ;
Polonskaia, M ;
Lau, LF .
BIOTECHNIQUES, 1999, 26 (01) :102-106
[30]   CHIMERIC GREEN FLUORESCENT PROTEIN AS A TOOL FOR VISUALIZING SUBCELLULAR ORGANELLES IN LIVING CELLS [J].
RIZZUTO, R ;
BRINI, M ;
PIZZO, P ;
MURGIA, M ;
POZZAN, T .
CURRENT BIOLOGY, 1995, 5 (06) :635-642