Ionic Current Rectification through Silica Nanopores

被引:84
作者
Cruz-Chu, Eduardo R. [1 ,2 ]
Aksimentiev, Aleksei [1 ,3 ]
Schulten, Klaus [1 ,2 ,3 ]
机构
[1] Univ Illinois, Beckman Inst Adv Sci & Technol, Urbana, IL 61801 USA
[2] Univ Illinois, Ctr Biophys & Computat Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
SOLID-STATE NANOPORES; NANOMETER-DIAMETER PORE; MOLECULAR-DYNAMICS; SYNTHETIC NANOPORE; NANOFLUIDIC DIODE; DNA TRANSLOCATION; ALPHA-HEMOLYSIN; ELECTRIC-FIELD; FORCE-FIELDS; WATER;
D O I
10.1021/jp804724p
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanopores immersed in electrolytic solution and under the influence of an electric field can produce ionic current rectification, where ionic currents are higher for one voltage polarity than for the opposite polarity, resulting in an asymmetric current-voltage (I-V) curve. This behavior has been observed in polymer- and silicon-based nanopores as well as in theoretically studied continuum models. By means of atomic level molecular dynamics (MD) simulations, we have performed a systematic investigation of KCl conductance in silica nanopores with a total simulation time of 680 ns. We found that ion-binding spots at the silica surfaces, such as dangling atoms, have effects on the ion concentration and electrostatic potential inside the nanopore, producing asymmetric I-V curves. Conversely, silica surfaces without ion-binding spots produce symmetric I-V curves.
引用
收藏
页码:1850 / 1862
页数:13
相关论文
共 77 条
[1]  
*ACC INC, 2003, CER V4 9
[2]   Imaging α-hemolysin with molecular dynamics:: Ionic conductance, osmotic permeability, and the electrostatic potential map [J].
Aksimentiev, A ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3745-3761
[3]   Microscopic kinetics of DNA translocation through synthetic nanopores [J].
Aksimentiev, A ;
Heng, JB ;
Timp, G ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2004, 87 (03) :2086-2097
[4]  
AKSIMENTIEV A, 2008, PROTOCOLS NANOSTRUCT, P181
[5]   Not ions alone: Barriers to ion permeation in nanopores and channels [J].
Beckstein, O ;
Tai, K ;
Sansom, MSP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (45) :14694-14695
[6]   Genetically engineered gold-binding polypeptides: structure prediction and molecular dynamics [J].
Braun, R ;
Sarikaya, M ;
Schulten, K .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2002, 13 (07) :747-757
[7]   Ionic conduction, rectification, and selectivity in single conical nanopores [J].
Cervera, J ;
Schiedt, B ;
Neumann, R ;
Mafé, S ;
Ramírez, P .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (10)
[8]   Atomic layer deposition to fine-tune the surface properties and diameters of fabricated nanopores [J].
Chen, P ;
Mitsui, T ;
Farmer, DB ;
Golovchenko, J ;
Gordon, RG ;
Branton, D .
NANO LETTERS, 2004, 4 (07) :1333-1337
[9]   Microscopic Mechanics of Hairpin DNA Translocation through Synthetic Nanopores [J].
Comer, Jeffrey ;
Dimitrov, Valentin ;
Zhao, Qian ;
Timp, Gregory ;
Aksimentiev, Aleksei .
BIOPHYSICAL JOURNAL, 2009, 96 (02) :593-608
[10]   Poisson-Nernst -Planck model of ion current rectification through a nanofluidic diode [J].
Constantin, Dragos ;
Siwy, Zuzanna S. .
PHYSICAL REVIEW E, 2007, 76 (04)