VIDEO-RATE SCANNING PROBE CONTROL CHALLENGES: SETTING THE STAGE FOR A MICROSCOPY REVOLUTION

被引:49
作者
Rost, M. J. [1 ,2 ]
van Baarle, G. J. C. [1 ,2 ]
Katan, A. J. [1 ]
van Spengen, W. M. [1 ,3 ]
Schakel, R. [1 ]
van Loo, W. A. [1 ]
Oosterkamp, T. H. [1 ]
Frenken, J. W. M. [1 ]
机构
[1] Leiden Univ, NL-2333 CA Leiden, Netherlands
[2] Leiden Probe Microscopy, NL-2333 CA Leiden, Netherlands
[3] Falco Syst, NL-1082 LV Amsterdam, Netherlands
关键词
Scanning probe microscopy; video-rate; mechanical issues; control electronics; ATOMIC-FORCE MICROSCOPY; HIGH-SPEED AFM; TUNNELING-MICROSCOPY; PIEZOELECTRIC TUBE; LOW-TEMPERATURE; REACTOR-STM; DESIGN; PERFORMANCE; CANTILEVERS; ACTUATORS;
D O I
10.1002/asjc.88
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Scanning probe microscopy is at the verge of revolutionizing microscopy once again. Video-rate scanning tunneling microscope (STM) and video-rate atomic force microscope (AFM) technology will enable the direct observation of many dynamic processes that are impossible to observe today, such as atom or molecule diffusion, real time film growth, or catalytic reactions. In this paper we discuss the critical aspects that have to be taken into account when working on increasing the imaging speed of scanning probe microscopes. We highlight the state-of-the-art developments in the control of the piezoelectric scanning elements and describe the latest innovations regarding the design and construction of the whole mechanical loop including new scanner geometries. We identify critical aspects for which no obvious solution exists and aspects where advanced control engineering can help, like piezo non-linearities, the acceleration limit and the challenging technical requirements for the preamplifiers that are needed for measuring a tunneling current. Finally, we provide an overview of a number of new directions that are being pursued to solve the problems Currently encountered in scanning probe technology.
引用
收藏
页码:110 / 129
页数:20
相关论文
共 96 条
[81]   Control strategies towards faster quantitative imaging in atomic force microscopy [J].
Stemmer, A ;
Schitter, G ;
Rieber, JM ;
Allgöwer, F .
EUROPEAN JOURNAL OF CONTROL, 2005, 11 (4-5) :384-395
[82]   Dual integrated actuators for extended range high speed atomic force microscopy [J].
Sulchek, T ;
Minne, SC ;
Adams, JD ;
Fletcher, DA ;
Atalar, A ;
Quate, CF ;
Adderton, DM .
APPLIED PHYSICS LETTERS, 1999, 75 (11) :1637-1639
[83]   Feed-forward compensation for high-speed atomic force microscopy imaging of biomolecules [J].
Uchihashi, T ;
Kodera, N ;
Itoh, H ;
Yamashita, H ;
Ando, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS BRIEF COMMUNICATIONS & REVIEW PAPERS, 2006, 45 (3B) :1904-1908
[84]  
VANLOO WA, IN PRESS
[85]   The "Millipede" -: More than one thousand tips for future AFM data storage [J].
Vettiger, P ;
Despont, M ;
Drechsler, U ;
Dürig, U ;
Häberle, W ;
Lutwyche, MI ;
Rothuizen, HE ;
Stutz, R ;
Widmer, R ;
Binnig, GK .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2000, 44 (03) :323-340
[86]   Probing protein-protein interactions in real time [J].
Viani, MB ;
Pietrasanta, LI ;
Thompson, JB ;
Chand, A ;
Gebeshuber, IC ;
Kindt, JH ;
Richter, M ;
Hansma, HG ;
Hansma, PK .
NATURE STRUCTURAL BIOLOGY, 2000, 7 (08) :644-647
[87]   Small cantilevers for force spectroscopy of single molecules [J].
Viani, MB ;
Schäffer, TE ;
Chand, A ;
Rief, M ;
Gaub, HE ;
Hansma, PK .
JOURNAL OF APPLIED PHYSICS, 1999, 86 (04) :2258-2262
[88]   Short cantilevers for atomic force microscopy [J].
Walters, DA ;
Cleveland, JP ;
Thomson, NH ;
Hansma, PK ;
Wendman, MA ;
Gurley, G ;
Elings, V .
REVIEW OF SCIENTIFIC INSTRUMENTS, 1996, 67 (10) :3583-3590
[89]   A 300 mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution [J].
Wiebe, J ;
Wachowiak, A ;
Meier, F ;
Haude, D ;
Foster, T ;
Morgenstern, M ;
Wiesendanger, R .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (11) :4871-4879
[90]   ATOMIC-SCALE RESTRUCTURING IN HIGH-PRESSURE CATALYSIS [J].
WILSON, J ;
DEGROOT, C .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (20) :7860-7866