A strategy for extracting and analyzing large-scale quantitative epistatic interaction data

被引:233
作者
Collins, Sean R.
Schuldiner, Maya
Krogan, Nevan J.
Weissman, Jonathan S. [1 ]
机构
[1] Univ Calif San Francisco, Howard Hughes Med Inst, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
[2] Calif Inst Quantitat Biomed Res, San Francisco, CA 94143 USA
[3] Univ Toronto, Banting & Best Dept Med Res, Toronto, ON M5G 1L6, Canada
[4] Univ Toronto, Dept Med Genet & Microbiol, Toronto, ON M5S 1A8, Canada
[5] Univ Calif San Francisco, Dept Cellular & Mol Pharmacol, San Francisco, CA 94143 USA
关键词
D O I
10.1186/gb-2006-7-7-r63
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Recently, approaches have been developed for high-throughput identification of synthetic sick/lethal gene pairs. However, these are only a specific example of the broader phenomenon of epistasis, wherein the presence of one mutation modulates the phenotype of another. We present analysis techniques for generating high-confidence quantitative epistasis scores from measurements made using synthetic genetic array and epistatic miniarray profile (E-MAP) technology, as well as several tools for higher-level analysis of the resulting data that are greatly enhanced by the quantitative score and detection of alleviating interactions.
引用
收藏
页数:14
相关论文
共 23 条
  • [1] A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    Baldi, P
    Long, AD
    [J]. BIOINFORMATICS, 2001, 17 (06) : 509 - 519
  • [2] Eliminating gene conversion improves high-throughput genetics in Saccharomyces cerevisiae
    Daniel, JA
    Yoo, JY
    Bettinger, BT
    Amberg, DC
    Burke, DJ
    [J]. GENETICS, 2006, 172 (01) : 709 - 711
  • [3] Derivation of genetic interaction networks from quantitative phenotype data
    Drees, BL
    Thorsson, V
    Carter, GW
    Rives, AW
    Raymond, MZ
    Avila-Campillo, I
    Shannon, P
    Galitski, T
    [J]. GENOME BIOLOGY, 2005, 6 (04)
  • [4] Test of synergistic interactions among deleterious mutations in bacteria
    Elena, SF
    Lenski, RE
    [J]. NATURE, 1997, 390 (6658) : 395 - 398
  • [5] Friedman J., 2001, The elements of statistical learning, V1, DOI DOI 10.1007/978-0-387-21606-5
  • [6] SYNTHETIC ENHANCEMENT IN GENE INTERACTION - A GENETIC TOOL COME OF AGE
    GUARENTE, L
    [J]. TRENDS IN GENETICS, 1993, 9 (10) : 362 - 366
  • [7] Hart, 2006, PATTERN CLASSIFICATI
  • [8] Systematic quantification of gene interactions by phenotypic array analysis
    Hartman, JL
    Tippery, NP
    [J]. GENOME BIOLOGY, 2004, 5 (07)
  • [9] YEAST MUTANTS DEFICIENT IN PROTEIN GLYCOSYLATION
    HUFFAKER, TC
    ROBBINS, PW
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (24): : 7466 - 7470
  • [10] DISTINCT SETS OF SEC GENES GOVERN TRANSPORT VESICLE FORMATION AND FUSION EARLY IN THE SECRETORY PATHWAY
    KAISER, CA
    SCHEKMAN, R
    [J]. CELL, 1990, 61 (04) : 723 - 733