Global nonlinear polynomial models: Structure, term clusters and fixed points

被引:36
作者
Aguirre, LA [1 ]
Mendes, EMAM [1 ]
机构
[1] UNIV SHEFFIELD, DEPT AUTOMAT CONTROL & SYST ENGN, SHEFFIELD S1 4DU, S YORKSHIRE, ENGLAND
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 1996年 / 6卷 / 02期
关键词
D O I
10.1142/S0218127496000059
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, it is shown that the number and location of the fixed points of global nonlinear polynomials can be specified in terms of the term clusters and cluster coefficients of the respective models. It is also shown that if the structure (that is, the model basis) of a nonlinear polynomial model of degree l includes all possible terms then such a model will always have l nontrivial fixed points. In modeling problems, where the estimated polynomials are to reproduce fundamental invariants of the original system, this situation will not always be welcome and therefore suggests that the structure of polynomial models should be carefully chosen. Ways of achieving this are briefly mentioned.
引用
收藏
页码:279 / 294
页数:16
相关论文
共 37 条
[31]   INPUT OUTPUT PARAMETRIC MODELS FOR NON-LINEAR SYSTEMS .1. DETERMINISTIC NON-LINEAR SYSTEMS [J].
LEONTARITIS, IJ ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 41 (02) :303-328
[32]  
MADAN R, 1993, J CIRCUITS SYSTEMS C, V3
[33]   PARSIMONIOUS DYNAMICAL RECONSTRUCTION [J].
Mees, Alistair .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (03) :669-675
[34]   GEOMETRY FROM A TIME-SERIES [J].
PACKARD, NH ;
CRUTCHFIELD, JP ;
FARMER, JD ;
SHAW, RS .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :712-716
[35]  
Takens F., 1981, Dynamical Systems and Turbulence, P366, DOI [10.1007/BFb0091924, DOI 10.1007/BFB0091924]
[37]  
Wiggins S, 1990, INTRO APPL NONLINEAR, P194