Ultrahigh-quality silicon carbide single crystals

被引:350
作者
Nakamura, D
Gunjishima, I
Yamaguchi, S
Ito, T
Okamoto, A
Kondo, H
Onda, S
Takatori, K [1 ]
机构
[1] Toyota Cent Res & Dev Labs Inc, Aichi 4801192, Japan
[2] DENSO Corp, Res Labs, Aichi 4700111, Japan
基金
以色列科学基金会;
关键词
D O I
10.1038/nature02810
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Silicon carbide (SiC) has a range of useful physical, mechanical and electronic properties that make it a promising material for next-generation electronic devices(1,2). Careful consideration of the thermal conditions(3-6) in which SiC {0001} is grown has resulted in improvements in crystal diameter and quality: the quantity of macroscopic defects such as hollow core dislocations (micropipes)(7-9), inclusions, small-angle boundaries and long-range lattice warp has been reduced(10,11). But some macroscopic defects (about 1-10 cm(-2)) and a large density of elementary dislocations (similar to10(4) cm(-2)), such as edge, basal plane and screw dislocations, remain within the crystal, and have so far prevented the realization of high-efficiency, reliable electronic devices in SiC (refs 12-16). Here we report a method, inspired by the dislocation structure of SiC grown perpendicular to the c-axis (a-face growth)(17), to reduce the number of dislocations in SiC single crystals by two to three orders of magnitude, rendering them virtually dislocation-free. These substrates will promote the development of high-power SiC devices and reduce energy losses of the resulting electrical systems.
引用
收藏
页码:1009 / 1012
页数:4
相关论文
共 22 条
[1]   COMPARISON OF 6H-SIC, 3C-SIC, AND SI FOR POWER DEVICES [J].
BHATNAGAR, M ;
BALIGA, BJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (03) :645-655
[2]   GROWTH OF SILICON CRYSTALS FREE FROM DISLOCATIONS [J].
DASH, WC .
JOURNAL OF APPLIED PHYSICS, 1959, 30 (04) :459-474
[3]   CAPILLARY EQUILIBRIA OF DISLOCATED CRYSTALS [J].
FRANK, FC .
ACTA CRYSTALLOGRAPHICA, 1951, 4 (06) :497-501
[4]   Synchrotron radiographic study and computer simulation of reactions between micropipes in silicon carbide [J].
Gutkin, MY ;
Sheinerman, AG ;
Argunova, TS ;
Mokhov, EN ;
Je, JH ;
Hwu, Y ;
Tsai, WL ;
Margaritondo, G .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (11) :7076-7082
[5]   Progress towards SiC products [J].
Harris, CI ;
Savage, S ;
Konstantinov, A ;
Bakowski, M ;
Ericsson, P .
APPLIED SURFACE SCIENCE, 2001, 184 (1-4) :393-398
[6]   Dislocation content of micropipes in SiC [J].
Heindl, J ;
Dorsch, W ;
Strunk, PP ;
Muller, SG ;
Eckstein, R ;
Hofmann, D ;
Winnacker, A .
PHYSICAL REVIEW LETTERS, 1998, 80 (04) :740-741
[7]   In-situ observation of silicon carbide sublimation growth by X-ray topography [J].
Kato, T ;
Oyanagi, N ;
Yamaguchi, H ;
Nishizawa, S ;
Khan, MN ;
Kitou, Y ;
Arai, K .
JOURNAL OF CRYSTAL GROWTH, 2001, 222 (03) :579-585
[8]   Long term operation of 4.5kV PiN and 2.5kV JBS diodes [J].
Lendenmann, H ;
Dahlquist, F ;
Johansson, N ;
Söderholm, R ;
Nilsson, PA ;
Bergman, JP ;
Skytt, P .
SILICON CARBIDE AND RELATED MATERIALS, ECSCRM2000, 2001, 353-356 :727-730
[9]  
Malhan RK, 2002, MATER SCI FORUM, V433-4, P917, DOI 10.4028/www.scientific.net/MSF.433-436.917
[10]   Step-controlled epitaxial growth of SiC: high quality homoepitaxy [J].
Matsunami, H ;
Kimoto, T .
MATERIALS SCIENCE & ENGINEERING R-REPORTS, 1997, 20 (03) :125-166