Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites

被引:477
作者
Thostenson, Erik T. [1 ]
Chou, Tsu-Wei [1 ]
机构
[1] Univ Delaware, Dept Mech Engn, Ctr Composite Mat, Newark, DE 19716 USA
关键词
carbon composites; carbon nanotubes; fracture; electrical properties; thermal conductivity;
D O I
10.1016/j.carbon.2006.05.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The novel properties of carbon nanotubes have generated scientific and technical interest in the development of nanotube-reinforced polymer composites. In order to utilize nanotubes in multi-functional material systems it is crucial to develop processing techniques that are amenable to scale-up for high volume, high rate production. In this research we investigate a scalable calendering approach for achieving dispersion of CVD-grown multi-walled carbon nanotubes through intense shear mixing. Electron microscopy was utilized to study the micro and nanoscale structure evolution during the manufacturing process and optimize the processing conditions for producing highly-dispersed nanocomposites. After processing protocols were established, nanotube/epoxy composites were processed with varying reinforcement fractions and the fracture toughness and electrical/thermal transport properties were evaluated. The as-processed nanocomposites exhibited significantly enhanced fracture toughness at low nanotube concentrations. The high aspect ratios of the carbon nanotubes in the as-processed composites enabled the formation of a conductive percolating network at concentrations below 0.1% by weight. The thermal conductivity increased linearly with nanotube concentration to a maximum increase of 60% at 5 wt.% carbon nanotubes. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3022 / 3029
页数:8
相关论文
共 27 条
[1]   Very low conductivity threshold in bulk isotropic single-walled carbon nanotube-epoxy composites [J].
Bryning, MB ;
Islam, MF ;
Kikkawa, JM ;
Yodh, AG .
ADVANCED MATERIALS, 2005, 17 (09) :1186-+
[2]  
Chou T. W., 1992, MICROSTRUCTURAL DESI
[3]   Covalent functionalization of single-walled carbon nanotubes for materials applications [J].
Dyke, CA ;
Tour, JM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (51) :11151-11159
[4]   Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites [J].
Fidelus, JD ;
Wiesel, E ;
Gojny, FH ;
Schulte, K ;
Wagner, HD .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (11) :1555-1561
[5]   Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study [J].
Gojny, FH ;
Wichmann, MHG ;
Fiedler, B ;
Schulte, K .
COMPOSITES SCIENCE AND TECHNOLOGY, 2005, 65 (15-16) :2300-2313
[6]   Carbon nanotube-reinforced epoxy-compo sites:: enhanced stiffness and fracture toughness at low nanotube content [J].
Gojny, FH ;
Wichmann, MHG ;
Köpke, U ;
Fiedler, B ;
Schulte, K .
COMPOSITES SCIENCE AND TECHNOLOGY, 2004, 64 (15) :2363-2371
[7]   Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites [J].
Gojny, FH ;
Wichmann, MHG ;
Fiedler, B ;
Bauhofer, W ;
Schulte, K .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2005, 36 (11) :1525-1535
[8]   Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites [J].
Gojny, FH ;
Wichmann, MHG ;
Fiedler, B ;
Kinloch, IA ;
Bauhofer, W ;
Windle, AH ;
Schulte, K .
POLYMER, 2006, 47 (06) :2036-2045
[9]   Electrical properties of single-wall carbon nanotube and epoxy composites [J].
Kim, B ;
Lee, J ;
Yu, IS .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (10) :6724-6728
[10]   Characterizing energy dissipation in single-walled carbon nanotube polycarbonate composites [J].
Koratkar, NA ;
Suhr, J ;
Joshi, A ;
Kane, RS ;
Schadler, LS ;
Ajayan, PM ;
Bartolucci, S .
APPLIED PHYSICS LETTERS, 2005, 87 (06)