Further results on robustness of (Possibly discontinuous) sample and hold feedback

被引:27
作者
Kellett, CM [1 ]
Shim, H
Teel, AR
机构
[1] Univ Melbourne, Dept Elect & Elect Engn, Melbourne, Vic 3052, Australia
[2] Seoul Natl Univ, Sch Elect Engn & Comp Sci, Seoul 151600, South Korea
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Lyapunov models; robustness; sampled-data systems;
D O I
10.1109/TAC.2004.831184
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We demonstrate that sample and hold state feedback control (possibly discontinuous with respect to the state) is robust when the closed loop system possesses an appropriate Lyapunov function. We first show that if a Lyapunov decrease over sampling periods exists for the nominal system, this decrease can be maintained with some degradation relative to a sufficiently small additive perturbation. We then proceed to catalog several applications of this robustness, e.g., robustness to measurement noise, computational delays, or fast actuator dynamics.
引用
收藏
页码:1081 / 1089
页数:9
相关论文
共 21 条
[1]   Continuous control-Lyapunov functions for asymptotically controllable time-varying systems [J].
Albertini, F ;
Sontag, ED .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (18) :1630-1641
[2]   Effect of unmodeled actuator dynamics on output feedback stabilization of nonlinear systems [J].
Aldhaheri, RW ;
Khalil, HK .
AUTOMATICA, 1996, 32 (09) :1323-1327
[3]  
Brockett R. W., 1982, DIFFER GEOMETRIC CON, V27, P181
[4]   Feedback stabilization and Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Rifford, L ;
Stern, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :25-48
[5]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[6]   Asymptotic stability and smooth Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Stern, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (01) :69-114
[7]   Weak converse Lyapunov theorems and control-Lyapunov functions [J].
Kellett, CM ;
Teel, AR .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2004, 42 (06) :1934-1959
[8]  
KELLETT CM, 2002, AM CONTR C ANCH AK M
[9]  
KELLETT CM, 2002, THESIS U CALIFORNIA
[10]  
KELLETT CM, 2002, 41 IEEE C DEC CONTR