Combining Structural Modeling with Ensemble Machine Learning to Accurately Predict Protein Fold Stability and Binding Affinity Effects upon Mutation

被引:59
作者
Berliner, Niklas [1 ]
Teyra, Joan [1 ]
Colak, Recep [1 ,3 ]
Garcia Lopez, Sebastian [1 ,4 ]
Kim, Philip M. [1 ,2 ,3 ]
机构
[1] Univ Toronto, Terrence Donnelly Ctr Cellular & Biomol Res CCBR, Toronto, ON, Canada
[2] Univ Toronto, Dept Mol Genet, Toronto, ON, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[4] Univ Nacl Colombia, Manizales, Colombia
来源
PLOS ONE | 2014年 / 9卷 / 09期
基金
加拿大自然科学与工程研究理事会;
关键词
SINGLE-NUCLEOTIDE POLYMORPHISMS; AMINO-ACID SUBSTITUTIONS; HOT-SPOTS; SOMATIC MUTATIONS; HUMAN GENOME; WEB SERVER; CANCER; ENERGY; EVOLUTION; SEQUENCE;
D O I
10.1371/journal.pone.0107353
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Advances in sequencing have led to a rapid accumulation of mutations, some of which are associated with diseases. However, to draw mechanistic conclusions, a biochemical understanding of these mutations is necessary. For coding mutations, accurate prediction of significant changes in either the stability of proteins or their affinity to their binding partners is required. Traditional methods have used semi-empirical force fields, while newer methods employ machine learning of sequence and structural features. Here, we show how combining both of these approaches leads to a marked boost in accuracy. We introduce ELASPIC, a novel ensemble machine learning approach that is able to predict stability effects upon mutation in both, domain cores and domain-domain interfaces. We combine semi-empirical energy terms, sequence conservation, and a wide variety of molecular details with a Stochastic Gradient Boosting of Decision Trees (SGB-DT) algorithm. The accuracy of our predictions surpasses existing methods by a considerable margin, achieving correlation coefficients of 0.77 for stability, and 0.75 for affinity predictions. Notably, we integrated homology modeling to enable proteome-wide prediction and show that accurate prediction on modeled structures is possible. Lastly, ELASPIC showed significant differences between various types of disease-associated mutations, as well as between disease and common neutral mutations. Unlike pure sequence-based prediction methods that try to predict phenotypic effects of mutations, our predictions unravel the molecular details governing the protein instability, and help us better understand the molecular causes of diseases.
引用
收藏
页数:12
相关论文
共 75 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Characterizing Changes in the Rate of Protein-Protein Dissociation upon Interface Mutation Using Hotspot Energy and Organization [J].
Agius, Rudi ;
Torchala, Mieczyslaw ;
Moal, Iain H. ;
Fernandez-Recio, Juan ;
Bates, Paul A. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[3]   A map of human genome variation from population-scale sequencing [J].
Altshuler, David ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Collins, Francis S. ;
De la Vega, Francisco M. ;
Donnelly, Peter ;
Egholm, Michael ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Knoppers, Bartha M. ;
Lander, Eric S. ;
Lehrach, Hans ;
Mardis, Elaine R. ;
McVean, Gil A. ;
Nickerson, DebbieA. ;
Peltonen, Leena ;
Schafer, Alan J. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Deiros, David ;
Metzker, Mike ;
Muzny, Donna ;
Reid, Jeff ;
Wheeler, David ;
Wang, Jun ;
Li, Jingxiang ;
Jian, Min ;
Li, Guoqing ;
Li, Ruiqiang ;
Liang, Huiqing ;
Tian, Geng ;
Wang, Bo ;
Wang, Jian ;
Wang, Wei ;
Yang, Huanming ;
Zhang, Xiuqing ;
Zheng, Huisong ;
Lander, Eric S. ;
Altshuler, David L. ;
Ambrogio, Lauren ;
Bloom, Toby ;
Cibulskis, Kristian ;
Fennell, Tim J. ;
Gabriel, Stacey B. .
NATURE, 2010, 467 (7319) :1061-1073
[4]   Versatility and Invariance in the Evolution of Homologous Heteromeric Interfaces [J].
Andreani, Jessica ;
Faure, Guilhem ;
Guerois, Raphael .
PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (08)
[5]  
[Anonymous], R LANG ENV STAT COMP
[6]  
[Anonymous], 2012, Nature
[7]   Update on activities at the Universal Protein Resource (UniProt) in 2013 [J].
Apweiler, Rolf ;
Martin, Maria Jesus ;
O'Donovan, Claire ;
Magrane, Michele ;
Alam-Faruque, Yasmin ;
Alpi, Emanuela ;
Antunes, Ricardo ;
Arganiska, Joanna ;
Casanova, Elisabet Barrera ;
Bely, Benoit ;
Bingley, Mark ;
Bonilla, Carlos ;
Britto, Ramona ;
Bursteinas, Borisas ;
Chan, Wei Mun ;
Chavali, Gayatri ;
Cibrian-Uhalte, Elena ;
Da Silva, Alan ;
De Giorgi, Maurizio ;
Dimmer, Emily ;
Fazzini, Francesco ;
Gane, Paul ;
Fedotov, Alexander ;
Castro, Leyla Garcia ;
Garmiri, Penelope ;
Hatton-Ellis, Emma ;
Hieta, Reija ;
Huntley, Rachael ;
Jacobsen, Julius ;
Jones, Rachel ;
Legge, Duncan ;
Liu, Wudong ;
Luo, Jie ;
MacDougall, Alistair ;
Mutowo, Prudence ;
Nightingale, Andrew ;
Orchard, Sandra ;
Patient, Samuel ;
Pichler, Klemens ;
Poggioli, Diego ;
Pundir, Sangya ;
Pureza, Luis ;
Qi, Guoying ;
Rosanoff, Steven ;
Sawford, Tony ;
Sehra, Harminder ;
Turner, Edward ;
Volynkin, Vladimir ;
Wardell, Tony ;
Watkins, Xavier .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D43-D47
[8]   Network medicine: a network-based approach to human disease [J].
Barabasi, Albert-Laszlo ;
Gulbahce, Natali ;
Loscalzo, Joseph .
NATURE REVIEWS GENETICS, 2011, 12 (01) :56-68
[9]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[10]   ProTherm, version 4.0: thermodynamic database for proteins and mutants [J].
Bava, KA ;
Gromiha, MM ;
Uedaira, H ;
Kitajima, K ;
Sarai, A .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D120-D121