Approximating extent measures of points

被引:215
作者
Agarwal, PK
Har-Peled, S
Varadarajan, KR
机构
[1] Duke Univ, Dept Comp Sci, Durham, NC 27708 USA
[2] Univ Illinois, Dept Comp Sci, DCL 2111, Urbana, IL 61801 USA
[3] Univ Iowa, Dept Comp Sci, Iowa City, IA 52242 USA
关键词
computational geometry; approximation; algorithms; theory;
D O I
10.1145/1008731.1008736
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a general technique for approximating various descriptors of the extent of a set P of n points in R-d when the dimension d is an arbitrary fixed constant. For a given extent measure mu and a parameter epsilon > 0, it computes in time O(n + 1/epsilon(O(1))) a subset Q subset of or equal to P of size 1/epsilon(O(1)), with the property that (1 - epsilon)mu(P) less than or equal to mu(Q) less than or equal to mu(P). The specific applications of our technique include epsilon-approximation algorithms for (i) computing diameter, width, and smallest bounding box, ball, and cylinder of P, (ii) maintaining all the previous measures for a set of moving points, and (iii) fitting spheres and cylinders through a point set P. Our algorithms are considerably simpler, and faster in many cases, than previously known algorithms.
引用
收藏
页码:606 / 635
页数:30
相关论文
共 34 条
[1]  
Agarwal PK, 2000, HANDBOOK OF COMPUTATIONAL GEOMETRY, P49, DOI 10.1016/B978-044482537-7/50003-6
[2]   Approximation algorithms for minimum-width annuli and shells [J].
Agarwal, PK ;
Aronov, B ;
Har-Peled, S ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 2000, 24 (04) :687-705
[3]   Efficient algorithms for geometric optimization [J].
Agarwal, PK ;
Sharir, M .
ACM COMPUTING SURVEYS, 1998, 30 (04) :412-458
[4]   Indexing Moving Points [J].
Agarwal, PK ;
Arge, L ;
Erickson, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2003, 66 (01) :207-243
[5]   Maintaining the extent of a moving point set [J].
Agarwal, PK ;
Guibas, LJ ;
Hershberger, J ;
Veach, E .
DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (03) :353-374
[6]   Exact and approximation algorithms for minimum-width cylindrical shells [J].
Agarwal, PK ;
Aronov, B ;
Sharir, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 2001, 26 (03) :307-320
[7]   ON RANGE SEARCHING WITH SEMIALGEBRAIC SETS [J].
AGARWAL, PK ;
MATOUSEK, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1994, 11 (04) :393-418
[8]  
AGARWAL PK, 2002, P 10 ANN EUR S ALG, P54
[9]  
AGARWAL PK, 2004, UNPUB DISCRETIZING S
[10]  
[Anonymous], J ALGORITHMS