Pseudofractal scale-free web

被引:421
作者
Dorogovtsev, SN
Goltsev, AV
Mendes, JFF
机构
[1] Univ Porto, Fac Ciencias, Dept Fis, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Ciencias, Ctr Fis Porto, P-4169007 Oporto, Portugal
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
D O I
10.1103/PhysRevE.65.066122
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We find that scale-free random networks are excellently modeled by simple deterministic graphs. Our graph has a discrete degree distribution (degree is the number of connections of a vertex), which is characterized by a power law with exponent gamma=1+ln 3/ln 2. Properties of this compact structure are surprisingly close to those of growing random scale-free networks with gamma in the most interesting region, between 2 and 3. We succeed to find exactly and numerically with high precision all main characteristics of the graph. In particular, we obtain the exact shortest-path-length distribution. For a large network (ln N>>1) the distribution tends to a Gaussian of width similar torootln N centered at (-)lsimilar toln N. We show that the eigenvalue spectrum of the adjacency matrix of the graph has a power-law tail with exponent 2+gamma.
引用
收藏
页码:1 / 066122
页数:4
相关论文
共 31 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Error and attack tolerance of complex networks [J].
Albert, R ;
Jeong, H ;
Barabási, AL .
NATURE, 2000, 406 (6794) :378-382
[3]   Classes of small-world networks [J].
Amaral, LAN ;
Scala, A ;
Barthélémy, M ;
Stanley, HE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (21) :11149-11152
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]   Deterministic scale-free networks [J].
Barabási, AL ;
Ravasz, E ;
Vicsek, T .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2001, 299 (3-4) :559-564
[6]   Phase transition in fluctuating branched geometry [J].
Bialas, P ;
Burda, Z .
PHYSICS LETTERS B, 1996, 384 (1-4) :75-80
[7]  
Burda Z, 2001, PHYS REV E, V64, DOI 10.1103/PhysRevE.64.046118
[8]   Network robustness and fragility: Percolation on random graphs [J].
Callaway, DS ;
Newman, MEJ ;
Strogatz, SH ;
Watts, DJ .
PHYSICAL REVIEW LETTERS, 2000, 85 (25) :5468-5471
[9]   Breakdown of the internet under intentional attack [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2001, 86 (16) :3682-3685
[10]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628