Generalized Q-functions and Dirichlet-to-Neumann maps for elliptic differential operators

被引:26
作者
Alpay, Daniel [2 ]
Behrndt, Jussi [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
Q-function; Weyl function; Nevanlinna function; Elliptic operator; Dirichlet-to-Neumann map; Krein's formula; Trace formula; BOUNDARY-VALUE-PROBLEMS; SELF-ADJOINT EXTENSIONS; SCHRODINGER-OPERATORS; COLLIGATIONS; RESOLVENTS; FORMULA; MODEL; JOST;
D O I
10.1016/j.jfa.2009.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein type formulas for the difference of the resolvents and trace formulas in an H-2-framework are obtained. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1666 / 1694
页数:29
相关论文
共 53 条
[11]   Boundary value problems for elliptic partial differential operators on bounded domains [J].
Behrndt, Jussi ;
Langer, Matthias .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 243 (02) :536-565
[12]   Boundary Relations, Unitary Colligations, and Functional Models [J].
Behrndt, Jussi ;
Hassi, Seppo ;
de Snoo, Henk .
COMPLEX ANALYSIS AND OPERATOR THEORY, 2009, 3 (01) :57-98
[13]  
Behrndt J, 2009, OPER THEORY ADV APPL, V188, P49
[14]  
Birman M. S., 1962, VESTNIK LENINGRAD U, V17
[15]  
BrodskiiM S., 1978, RUSS MATH SURV, V33, P159, DOI 10.1070/RM1978v033n04ABEH002495
[16]   M-functions for closed extensions of adjoint pairs of operators with applications to elliptic boundary problems [J].
Brown, B. M. ;
Grubb, G. ;
Wood, I. G. .
MATHEMATISCHE NACHRICHTEN, 2009, 282 (03) :314-347
[17]   Boundary triplets and M-functions for non-selfadjoint operators, with applications to elliptic PDEs and block operator matrices [J].
Brown, Malcolm ;
Marletta, Marco ;
Naboko, Serguei ;
Wood, Ian .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2008, 77 :700-718
[18]   Spectra of self-adjoint extensions and applications to solvable schrodinger operators [J].
Bruening, Jochen ;
Geyler, Vladimir ;
Pankrashkin, Konstantin .
REVIEWS IN MATHEMATICAL PHYSICS, 2008, 20 (01) :1-70
[19]  
BRUINSMA P, 1993, KONINKLIJKE NEDER 40, P161
[20]  
Derkach V., 1995, J. Math. Sci, V73, P141, DOI [10.1007/BF02367240, DOI 10.1007/BF02367240]