Generalized Q-functions and Dirichlet-to-Neumann maps for elliptic differential operators

被引:26
作者
Alpay, Daniel [2 ]
Behrndt, Jussi [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Ben Gurion Univ Negev, Dept Math, IL-84105 Beer Sheva, Israel
关键词
Q-function; Weyl function; Nevanlinna function; Elliptic operator; Dirichlet-to-Neumann map; Krein's formula; Trace formula; BOUNDARY-VALUE-PROBLEMS; SELF-ADJOINT EXTENSIONS; SCHRODINGER-OPERATORS; COLLIGATIONS; RESOLVENTS; FORMULA; MODEL; JOST;
D O I
10.1016/j.jfa.2009.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein type formulas for the difference of the resolvents and trace formulas in an H-2-framework are obtained. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1666 / 1694
页数:29
相关论文
共 53 条
[31]   Robin-to-Robin Maps and Krein-Type Resolvent Formulas for Schrodinger Operators on Bounded Lipschitz Domains [J].
Gesztesy, Fritz ;
Mitrea, Marius .
MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 2: DIFFERENTIAL OPERATORS AND MECHANICS, 2009, 191 :81-113
[32]  
Gohberg I.C., 1969, Transl. Math. Monogr., V18
[33]  
GORBACHUK VI, 1991, MATH APPL, V48
[34]  
GRISVARD P, 1985, MONOGR STUDIES MATH, V24
[35]   COERCIVENESS AND SEMIBOUNDEDNESS OF GENERAL BOUNDARY PROBLEMS [J].
GRUBB, G .
ISRAEL JOURNAL OF MATHEMATICS, 1971, 10 (01) :32-&
[36]  
Grubb G., 1968, Ann. Sc. Norm. Sup. Pisa, V22, P425
[37]  
Hassi S., 1998, KREIN LANGER METHOD, V106, P201
[38]   SOME EXTENSION PROBLEMS CLOSELY CONNECTED WITH THEORY OF HERMITEAN OPERATORS IN SPACE IIX .1. SOME CLASSES OF FUNCTIONS AND THEIR REPRESENTATIONS [J].
KREIN, MG ;
LANGER, H .
MATHEMATISCHE NACHRICHTEN, 1977, 77 :187-236
[39]  
KREIN MG, 1973, ACTA SCI MATH, V34, P191
[40]  
KREIN MG, 1947, REC MATH, P431