Robin-to-Robin Maps and Krein-Type Resolvent Formulas for Schrodinger Operators on Bounded Lipschitz Domains

被引:32
作者
Gesztesy, Fritz [1 ]
Mitrea, Marius [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
来源
MODERN ANALYSIS AND APPLICATIONS: MARK KREIN CENTENARY CONFERENCE, VOL 2: DIFFERENTIAL OPERATORS AND MECHANICS | 2009年 / 191卷
关键词
Multi-dimensional Schrodinger operators; bounded Lipschitz domains; Robin-to-Dirichlet and Dirichlet-to-Neumann maps; SELF-ADJOINT EXTENSIONS; GENERALIZED RESOLVENTS; DIRICHLET; PERTURBATION; LAPLACIAN;
D O I
10.1007/978-3-7643-9921-4_6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study Robin-to-Robin snaps, and Krein-type resolvent; formulas for Schrodinger operators on bounded Lipschitz domains in R-n, n >= 2, with generalized Robin boundary conditions.
引用
收藏
页码:81 / 113
页数:33
相关论文
共 84 条
[1]  
Akhiezer NI., 1993, Theory of Linear Operators in Hilbert Space
[2]   Inverse spectral theory for symmetric operators with several gaps: scalar-type Weyl functions [J].
Albeverio, S ;
Brasche, JF ;
Malamud, MM ;
Neidhardt, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (01) :144-188
[3]   On the point spectrum of H-2-singular perturbations [J].
Albeverio, Sergio ;
Dudkin, Mykola ;
Konstantinov, Alexei ;
Koshmanenko, Volodymyr .
MATHEMATISCHE NACHRICHTEN, 2007, 280 (1-2) :20-27
[4]   M operators:: a generalisation of Weyl-Titchmarsh theory [J].
Amrein, WO ;
Pearson, DB .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 171 (1-2) :1-26
[5]  
[Anonymous], 1944, DOKL AKAD NAUK SSSR
[6]  
[Anonymous], 2000, Methods Funct. Anal. Topol
[7]   Dirichlet and Neumann boundary conditions: What is in between? [J].
Arendt, W ;
Warma, M .
JOURNAL OF EVOLUTION EQUATIONS, 2003, 3 (01) :119-135
[8]   The Laplacian with Robin boundary conditions on arbitrary domains [J].
Arendt, W ;
Warma, M .
POTENTIAL ANALYSIS, 2003, 19 (04) :341-363
[9]   The von Neumann problem for nonnegative symmetric operators [J].
Arlinskii, Y ;
Tsekanovskii, E .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 51 (03) :319-356
[10]   Steklov eigenproblems and the representation of solutions of elliptic boundary value problems [J].
Auchmuty, G .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2004, 25 (3-4) :321-348