A nontransgenic mouse model shows inducible amyloid-β (Aβ) peptide deposition and elucidates the role of apolipoprotein E in the amyloid cascade

被引:85
作者
Dolev, I [1 ]
Michaelson, DM [1 ]
机构
[1] Tel Aviv Univ, George S Wise Fac Life Sci, Dept Neurobiochem, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1073/pnas.0404458101
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The amyloid-beta (Abeta) peptide, a major pathological hallmark of Alzheimer's disease (AD), undergoes a cascade of interactions resulting in the formation of soluble aggregates and their conversion in the brain to insoluble deposits and mature senile plaques. Furthermore, the apoE4 isoform of apolipoprotein E (apoE), which is the major genetic risk factor of AD, is associated with increased Abeta deposition. It is not known how the different Abeta aggregates in the amyloid cascade are formed, contribute to the pathogenesis of AD, or are affected by apoE4. To investigate the initial aggregation stages underlying the amyloid cascade in vivo and how apoE affects them, we examined the effects of prolonged inhibition and subsequent reactivation of the Abeta-degrading protease neprilysin on deposition, disaggregation, and fibrillization of Abeta in apoE-transgenic and control mice. In control mice, intracerebroventricular infusion of thiorphan, which inhibits neprilysin, induced Abeta42 and Abeta40 deposition and fibrillization. On termination of thiorphan treatment, the number of Abeta deposits decreased, whereas the fibrillar Abeta deposits were unaffected. Similar treatments in apoE-deficient mice and mice transgenic for human apoE4 or apoE3 revealed that apoE4 enhances specifically the nucleation and aggregation of immunopositive Abeta deposits and that reversible disaggregation of these deposits and their irreversible conversion to fibrillar deposits are stimulated similarly by the different apoE isoforms. Deposition of Abeta and its enhancement by apoE4 were accompanied by increased astrogliosis both far from and near the Abeta deposits, suggesting that astrogliosis might be triggered by both insoluble and soluble Abeta aggregates.
引用
收藏
页码:13909 / 13914
页数:6
相关论文
共 53 条
[11]   Alzheimer's disease β-amyloid peptide is increased in mice deficient in endothelin-converting enzyme [J].
Eckman, EA ;
Watson, M ;
Marlow, L ;
Sambamurti, K ;
Eckman, CB .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (04) :2081-2084
[12]   Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD) [J].
Edbauer, D ;
Willem, M ;
Lammich, S ;
Steiner, H ;
Haass, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (16) :13389-13393
[13]   APOLIPOPROTEIN-E IS A KINETIC BUT NOT A THERMODYNAMIC INHIBITOR OF AMYLOID FORMATION - IMPLICATIONS FOR THE PATHOGENESIS AND TREATMENT OF ALZHEIMER-DISEASE [J].
EVANS, KC ;
BERGER, EP ;
CHO, CG ;
WEISGRABER, KH ;
LANSBURY, PT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (03) :763-767
[14]   Unique lipoproteins secreted by primary astrocytes from wild type, apoE (-/-), and human apoE transgenic mice [J].
Fagan, AM ;
Holtzman, DM ;
Munson, G ;
Mathur, T ;
Schneider, D ;
Chang, LK ;
Getz, GS ;
Reardon, CA ;
Lukens, J ;
Shah, JA ;
LaDu, MJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (42) :30001-30007
[15]   Human and murine ApoE markedly alters Aβ metabolism before and after plaque formation in a mouse model of Alzheimer's disease [J].
Fagan, AM ;
Watson, M ;
Parsadanian, M ;
Bales, KR ;
Paul, SM ;
Holtzman, DM .
NEUROBIOLOGY OF DISEASE, 2002, 9 (03) :305-318
[16]   Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo [J].
Farris, W ;
Mansourian, S ;
Chang, Y ;
Lindsley, L ;
Eckman, EA ;
Frosch, MP ;
Eckman, CB ;
Tanzi, RE ;
Selkoe, DJ ;
Guénette, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) :4162-4167
[17]   Alzheimer's disease-affected brain:: Presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss [J].
Gong, YS ;
Chang, L ;
Viola, KL ;
Lacor, PN ;
Lambert, MP ;
Finch, CE ;
Krafft, GA ;
Klein, WL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (18) :10417-10422
[18]   Medicine - The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics [J].
Hardy, J ;
Selkoe, DJ .
SCIENCE, 2002, 297 (5580) :353-356
[19]   Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons [J].
Hartley, DM ;
Walsh, DM ;
Ye, CPP ;
Diehl, T ;
Vasquez, S ;
Vassilev, PM ;
Teplow, DB ;
Selkoe, DJ .
JOURNAL OF NEUROSCIENCE, 1999, 19 (20) :8876-8884
[20]   Expression of human apolipoprotein E reduces amyloid-β deposition in a mouse model of Alzheimer's disease [J].
Holtzman, DM ;
Bales, KR ;
Wu, S ;
Bhat, P ;
Parsadanian, M ;
Fagan, AM ;
Chang, LK ;
Sun, YL ;
Paul, SM .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (06) :R15-R21