mTOR is essential for growth and proliferation in early mouse embryos and embryonic stem cells

被引:503
作者
Murakami, M
Ichisaka, T
Maeda, M
Oshiro, N
Hara, K
Edenhofer, F
Kiyama, H
Yonezawa, K [1 ]
Yamanaka, S
机构
[1] Nara Inst Sci & Technol, Res & Educ Ctr Genet Informat, Nara 6300192, Japan
[2] Japan Sci & Technol Agcy, CREST, Nara 6300192, Japan
[3] Osaka City Univ, Sch Med, Dept Anat & Neurobiol, Osaka 5458585, Japan
[4] Kobe Univ, Biosignal Res Inst, Kobe, Hyogo 6578501, Japan
[5] Kobe Univ, Sch Med, Dept Internal Med 4, Kobe, Hyogo 6500017, Japan
[6] Univ Bonn, Med Ctr, Inst Reconstruct Neurobiol, D-53105 Bonn, Germany
关键词
D O I
10.1128/mcb.24.15.6710-6718.2004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
TOR is a serine-threonine kinase that was originally identified as a target of rapamycin in Saccharomyces cerevisiae and then found to be highly conserved among eukaryotes. In Drosophila melanogaster, inactivation of TOR or its substrate, S6 kinase, results in reduced cell size and embryonic lethality, indicating a critical role for the TOR pathway in cell growth control. However, the in vivo functions of mammalian TOR (mTOR) remain unclear. In this study, we disrupted the kinase domain of mouse mTOR by homologous recombination. While heterozygous mutant mice were normal and fertile, homozygous mutant embryos died shortly after implantation due to impaired cell proliferation in both embryonic and extraembryonic compartments. Homozygous blastocysts looked normal, but their inner cell mass and trophoblast failed to proliferate in vitro. Deletion of the C-terminal six amino acids of mTOR, which are essential for kinase activity, resulted in reduced cell size and proliferation arrest in embryonic stem cells. These data show that mTOR controls both cell size and proliferation in early mouse embryos and embryonic stem cells.
引用
收藏
页码:6710 / 6718
页数:9
相关论文
共 55 条
[1]   TOR controls translation initiation and early G1 progression in yeast [J].
Barbet, NC ;
Schneider, U ;
Helliwell, SB ;
Stansfield, I ;
Tuite, MF ;
Hall, MN .
MOLECULAR BIOLOGY OF THE CELL, 1996, 7 (01) :25-42
[2]   A MAMMALIAN PROTEIN TARGETED BY G1-ARRESTING RAPAMYCIN-RECEPTOR COMPLEX [J].
BROWN, EJ ;
ALBERS, MW ;
SHIN, TB ;
ICHIKAWA, K ;
KEITH, CT ;
LANE, WS ;
SCHREIBER, SL .
NATURE, 1994, 369 (6483) :756-758
[3]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[4]   Phosphorylation of the translational repressor PHAS-I by the mammalian target of rapamycin [J].
Brunn, GJ ;
Hudson, CC ;
Sekulic, A ;
Williams, JM ;
Hosoi, H ;
Houghton, PJ ;
Lawrence, JC ;
Abraham, RT .
SCIENCE, 1997, 277 (5322) :99-101
[5]   Optical power induced damage to microelectromechanical mirrors [J].
Burns, DM ;
Bright, VM .
SENSORS AND ACTUATORS A-PHYSICAL, 1998, 70 (1-2) :6-14
[6]   RAPT1, A MAMMALIAN HOMOLOG OF YEAST TOR, INTERACTS WITH THE FKBP12 RAPAMYCIN COMPLEX [J].
CHIU, MI ;
KATZ, H ;
BERLIN, V .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (26) :12574-12578
[7]   Two motifs in the translational repressor PHAS-I required for efficient phosphorylation by mammalian target of rapamycin and for recognition by raptor [J].
Choi, KM ;
McMahon, LP ;
Lawrence, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (22) :19667-19673
[8]   Pten is essential for embryonic development and tumour suppression [J].
Di Cristofano, A ;
Pesce, B ;
Cordon-Cardo, C ;
Pandolfi, PP .
NATURE GENETICS, 1998, 19 (04) :348-355
[9]   Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases [J].
DiComo, CJ ;
Arndt, KT .
GENES & DEVELOPMENT, 1996, 10 (15) :1904-1916
[10]   Mammalian cell size is controlled by mTOR and its downstream targets S6K1 and 4EBP1/eIF4E [J].
Fingar, DC ;
Salama, S ;
Tsou, C ;
Harlow, E ;
Blenis, J .
GENES & DEVELOPMENT, 2002, 16 (12) :1472-1487