Pattern formation and localized structures in reaction-diffusion systems with non-Fickian transport

被引:31
作者
Clerc, M. G. [1 ]
Tirapegui, E. [1 ]
Trejo, M. [1 ]
机构
[1] Univ Chile, Fac Ciencias Fis & Matemat, Dept Fis, Santiago, Chile
关键词
D O I
10.1103/PhysRevLett.97.176102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the robust dynamical behaviors of reaction-diffusion systems where the transport gives rise to non-Fickian diffusion. A prototype model describing the deposition of molecules in a surface is used to show the generic appearance of Turing structures which can coexist with homogeneous states giving rise to localized structures through the pinning mechanism. The characteristic lengths of these structures are in the nanometer region in agreement with recent experimental observations.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Coarsening dynamics of the one-dimensional Cahn-Hilliard model [J].
Argentina, M ;
Clerc, MG ;
Rojas, R ;
Tirapegui, E .
PHYSICAL REVIEW E, 2005, 71 (04)
[2]   Bubbles interactions in the Cahn-Hilliard equation [J].
Calisto, H ;
Clerc, M ;
Rojas, R ;
Tirapegui, E .
PHYSICAL REVIEW LETTERS, 2000, 85 (18) :3805-3808
[3]   Localized patterns and hole solutions in one-dimensional extended systems [J].
Clerc, MG ;
Falcon, C .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (01) :48-53
[4]   Stable static localized structures in one dimension [J].
Coullet, P ;
Riera, C ;
Tresser, C .
PHYSICAL REVIEW LETTERS, 2000, 84 (14) :3069-3072
[5]   PATTERN-FORMATION OUTSIDE OF EQUILIBRIUM [J].
CROSS, MC ;
HOHENBERG, PC .
REVIEWS OF MODERN PHYSICS, 1993, 65 (03) :851-1112
[6]   A SIMPLE GLOBAL CHARACTERIZATION FOR NORMAL FORMS OF SINGULAR VECTOR-FIELDS [J].
ELPHICK, C ;
TIRAPEGUI, E ;
BRACHET, ME ;
COULLET, P ;
IOOSS, G .
PHYSICA D, 1987, 29 (1-2) :95-127
[7]   Nonequilibrium stationary microstructures in surface chemical reactions [J].
Hildebrand, M ;
Mikhailov, AS ;
Ertl, G .
PHYSICAL REVIEW E, 1998, 58 (05) :5483-5493
[8]   MASTER EQUATION APPROACH TO THE DYNAMICAL CRITICAL-BEHAVIOR OF THE SCHLOGL MODEL [J].
LANGOUCHE, F ;
ROEKAERTS, D ;
TIRAPEGUI, E .
PHYSICS LETTERS A, 1981, 82 (07) :309-312
[9]   Microscopic self-organization of enzymic reactions in small volumes [J].
Mikhailov, A ;
Hess, B .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49) :19059-19065
[10]  
Nicolis G., 1977, SELF ORG NONEQUILIBR