Physics of Silicene Stripes

被引:132
作者
Kara, A. [2 ]
Leandri, C. [1 ]
Davila, M. E. [3 ]
Padova, P. De [4 ]
Ealet, B. [1 ]
Oughaddou, H. [5 ,6 ]
Aufray, B. [1 ]
Lay, G. Le [1 ]
机构
[1] CNRS, CINaM, F-13288 Marseille 09, France
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
[3] CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[4] CNR, ISM, I-00133 Rome, Italy
[5] CEA, SIMA, F-91191 Gif Sur Yvette, France
[6] Univ Cergy Pontoise, Dept Phys, F-95000 Cergy Pontoise, France
关键词
Silicene; Graphene; Stripes; Superconductivity; NANOWIRES; GAS; AG;
D O I
10.1007/s10948-008-0427-8
中图分类号
O59 [应用物理学];
学科分类号
摘要
Silicene, a monolayer of silicon atoms tightly packed into a two-dimensional honeycomb lattice, is the challenging hypothetical reflection in the silicon realm of graphene, a one-atom thick graphite sheet, presently the hottest material in condensed matter physics. If existing, it would also reveal a cornucopia of new physics and potential applications. Here, we reveal the epitaxial growth of silicene stripes self-aligned in a massively parallel array on the anisotropic silver (110) surface. This crucial step in the silicene "gold rush" could give a new kick to silicon on the electronics road-map and open the most promising route towards wide-ranging applications. A hint of superconductivity in these silicene stripes poses intriguing questions related to the delicate interplay between paired correlated fermions, massless Dirac fermions and bosonic quasiparticles in low dimensions.
引用
收藏
页码:259 / 263
页数:5
相关论文
共 36 条
[1]   The use of nanocrystals in biological detection [J].
Alivisatos, P .
NATURE BIOTECHNOLOGY, 2004, 22 (01) :47-52
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Inverse proximity effect in a strongly correlated electron system [J].
Bourgeois, O ;
Frydman, A ;
Dynes, RC .
PHYSICAL REVIEW LETTERS, 2002, 88 (18) :4
[4]   Superconductivity in doped cubic silicon [J].
Bustarret, E. ;
Marcenat, C. ;
Achatz, P. ;
Kacmarcik, J. ;
Levy, F. ;
Huxley, A. ;
Ortega, L. ;
Bourgeois, E. ;
Blase, X. ;
Debarre, D. ;
Boulmer, J. .
NATURE, 2006, 444 (7118) :465-468
[5]   Experimental imaging of silicon nanotubes [J].
De Crescenzi, M ;
Castrucci, P ;
Scarselli, M ;
Diociaiuti, M ;
Chaudhari, PS ;
Balasubramanian, C ;
Bhave, TM ;
Bhoraskar, SV .
APPLIED PHYSICS LETTERS, 2005, 86 (23) :1-3
[6]   Burning match oxidation process of silicon nanowires screened at the atomic scale [J].
De Padova, Paola ;
Leandri, Christel ;
Vizzini, Sebastien ;
Quaresima, Claudio ;
Perfetti, Paolo ;
Olivieri, Bruno ;
Oughaddou, Hamid ;
Aufray, Bernard ;
Le Lay, Guy .
NANO LETTERS, 2008, 8 (08) :2299-2304
[7]   Growth of straight, atomically perfect, highly metallic silicon nanowires with chiral asymmetry [J].
De Padova, Paola ;
Quaresima, Claudio ;
Perfetti, Paolo ;
Olivieri, Bruno ;
Leandri, Christel ;
Aufray, Bernard ;
Vizzini, Sebastien ;
Le Lay, Guy .
NANO LETTERS, 2008, 8 (01) :271-275
[8]   Ab initio calculations for a hypothetical material:: Silicon nanotubes [J].
Fagan, SB ;
Baierle, RJ ;
Mota, R ;
da Silva, AJR ;
Fazzio, A .
PHYSICAL REVIEW B, 2000, 61 (15) :9994-9996
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]  
Geim A. K., 2008, SCI AM, V90