The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: A green fluorescent protein study

被引:159
作者
Liu, JW
Hughes, TE
Sessa, WC
机构
[1] YALE UNIV,SCH MED,BOYER CTR MOL MED,MOL CARDIOBIOL PROGRAM,NEW HAVEN,CT 06536
[2] YALE UNIV,SCH MED,BOYER CTR MOL MED,DEPT PHARMACOL,NEW HAVEN,CT 06536
[3] YALE UNIV,SCH MED,DEPT OPHTHALMOL & VISUAL SCI,NEW HAVEN,CT 06536
关键词
D O I
10.1083/jcb.137.7.1525
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Catalytically active endothelial nitric oxide synthase (eNOS) is located on the Golgi complex and in the caveolae of endothelial cells (EC). Mislocalization of eNOS caused by mutation of the N-myristoylation or cysteine palmitoylation sites impairs production of stimulated nitric oxide (NO), suggesting that intracellular targeting is critical for optimal NO production. To investigate the molecular determinants of eNOS targeting in EC, we constructed eNOS-green fluorescent protein (GFP) chimeras to study its localization in living and fixed cells. The full-length eNOS-GFP fusion colocalized with a Golgi marker, mannosidase II, and retained catalytic activity compared to wild-type (WT) eNOS, suggesting that the GFP tag does not interfere with eNOS localization or function. Experiments with different size amino-terminal fusion partners coupled to GFP demonstrated that the first 35 amino acids of eNOS are sufficient to target GFP into the Golgi region of NIH 3T3 cells. Additionally, the unique (Gly-Leu)(5) repeat located between the palmitoylation sites (Cys-15 and -26) of eNOS is necessary for its palmitoylation and thus localization, but not for N-myristoylation, membrane association, and NOS activity. The palmitoylation-deficient mutants displayed a more diffuse fluorescence pattern than did WT eNOS-GFP, but still were associated with intracellular membranes. Biochemical studies also showed that the palmitoylation-deficient mutants are associated with membranes as tightly as WT eNOS. Mutation of the N-myristoylation site Gly-2 (abolishing both N-myristoylation and palmitoylation) caused the GFP fusion protein to distribute throughout the cell as GFP alone, consistent with its primarily cytosolic nature in biochemical studies. Therefore, eNOS targets into the Golgi region of NIH 3T3 cells via the first 35 amino acids, including N-myristoylation and palmitoylation sites, and its overall membrane association requires N-myristoylation but not cysteine palmitoylation. These results suggest a novel role for fatty acylation in the specific compartmentalization of eNOS and most likely, for other dually acylated proteins, to the Golgi complex.
引用
收藏
页码:1525 / 1535
页数:11
相关论文
共 48 条
[31]  
SCHMIDT JW, 1987, J BIOL CHEM, V262, P13713
[32]   ENDOTHELIAL CAVEOLAE HAVE THE MOLECULAR-TRANSPORT MACHINERY FOR VESICLE BUDDING, DOCKING, AND FUSION INCLUDING VAMP, NSF, SNAP, ANNEXINS, AND GTPASES [J].
SCHNITZER, JE ;
LIU, J ;
OH, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (24) :14399-14404
[33]   Role of GTP hydrolysis in fission of caveolae directly from plasma membranes [J].
Schnitzer, JE ;
Oh, P ;
McIntosh, DP .
SCIENCE, 1996, 274 (5285) :239-242
[34]   FILIPIN-SENSITIVE CAVEOLAE-MEDIATED TRANSPORT IN ENDOTHELIUM - REDUCED TRANSCYTOSIS, SCAVENGER ENDOCYTOSIS, AND CAPILLARY-PERMEABILITY OF SELECT MACROMOLECULES [J].
SCHNITZER, JE ;
OH, P ;
PINNEY, E ;
ALLARD, J .
JOURNAL OF CELL BIOLOGY, 1994, 127 (05) :1217-1232
[35]   MUTATION OF N-MYRISTOYLATION SITE CONVERTS ENDOTHELIAL-CELL NITRIC-OXIDE SYNTHASE FROM A MEMBRANE TO A CYTOSOLIC PROTEIN [J].
SESSA, WC ;
BARBER, CM ;
LYNCH, KR .
CIRCULATION RESEARCH, 1993, 72 (04) :921-924
[36]   THE GOLGI ASSOCIATION OF ENDOTHELIAL NITRIC-OXIDE SYNTHASE IS NECESSARY FOR THE EFFICIENT SYNTHESIS OF NITRIC-OXIDE [J].
SESSA, WC ;
GARCIACARDENA, G ;
LIU, JW ;
KEH, A ;
POLLOCK, JS ;
BRADLEY, J ;
THIRU, S ;
BRAVERMAN, IM ;
DESAI, KM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (30) :17641-17644
[37]   Acylation targets endothelial nitric-oxide synthase to plasmalemmal caveolae [J].
Shaul, PW ;
Smart, EJ ;
Robinson, LJ ;
German, Z ;
Yuhanna, IS ;
Ying, YS ;
Anderson, RGW ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (11) :6518-6522
[38]   CYSTEINE(3) OF SRC FAMILY PROTEIN-TYROSINE KINASES DETERMINES PALMITOYLATION AND LOCALIZATION IN CAVEOLAE [J].
SHENOYSCARIA, AM ;
DIETZEN, DJ ;
KWONG, J ;
LINK, DC ;
LUBLIN, DM .
JOURNAL OF CELL BIOLOGY, 1994, 126 (02) :353-363
[39]   AMINO-ACID-RESIDUES-24-31 BUT NOT PALMITOYLATION OF CYSTEINE-30 AND CYSTEINE-45 ARE REQUIRED FOR MEMBRANE ANCHORING OF GLUTAMIC-ACID DECARBOXYLASE, GAD(65) [J].
SHI, YG ;
VEIT, B ;
BAEKKESKOV, S .
JOURNAL OF CELL BIOLOGY, 1994, 124 (06) :927-934
[40]   CAVEOLIN MOVES FROM CAVEOLAE TO THE GOLGI-APPARATUS IN RESPONSE TO CHOLESTEROL OXIDATION [J].
SMART, EJ ;
YING, YS ;
CONRAD, PA ;
ANDERSON, RGW .
JOURNAL OF CELL BIOLOGY, 1994, 127 (05) :1185-1197