The first 35 amino acids and fatty acylation sites determine the molecular targeting of endothelial nitric oxide synthase into the Golgi region of cells: A green fluorescent protein study

被引:159
作者
Liu, JW
Hughes, TE
Sessa, WC
机构
[1] YALE UNIV,SCH MED,BOYER CTR MOL MED,MOL CARDIOBIOL PROGRAM,NEW HAVEN,CT 06536
[2] YALE UNIV,SCH MED,BOYER CTR MOL MED,DEPT PHARMACOL,NEW HAVEN,CT 06536
[3] YALE UNIV,SCH MED,DEPT OPHTHALMOL & VISUAL SCI,NEW HAVEN,CT 06536
关键词
D O I
10.1083/jcb.137.7.1525
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Catalytically active endothelial nitric oxide synthase (eNOS) is located on the Golgi complex and in the caveolae of endothelial cells (EC). Mislocalization of eNOS caused by mutation of the N-myristoylation or cysteine palmitoylation sites impairs production of stimulated nitric oxide (NO), suggesting that intracellular targeting is critical for optimal NO production. To investigate the molecular determinants of eNOS targeting in EC, we constructed eNOS-green fluorescent protein (GFP) chimeras to study its localization in living and fixed cells. The full-length eNOS-GFP fusion colocalized with a Golgi marker, mannosidase II, and retained catalytic activity compared to wild-type (WT) eNOS, suggesting that the GFP tag does not interfere with eNOS localization or function. Experiments with different size amino-terminal fusion partners coupled to GFP demonstrated that the first 35 amino acids of eNOS are sufficient to target GFP into the Golgi region of NIH 3T3 cells. Additionally, the unique (Gly-Leu)(5) repeat located between the palmitoylation sites (Cys-15 and -26) of eNOS is necessary for its palmitoylation and thus localization, but not for N-myristoylation, membrane association, and NOS activity. The palmitoylation-deficient mutants displayed a more diffuse fluorescence pattern than did WT eNOS-GFP, but still were associated with intracellular membranes. Biochemical studies also showed that the palmitoylation-deficient mutants are associated with membranes as tightly as WT eNOS. Mutation of the N-myristoylation site Gly-2 (abolishing both N-myristoylation and palmitoylation) caused the GFP fusion protein to distribute throughout the cell as GFP alone, consistent with its primarily cytosolic nature in biochemical studies. Therefore, eNOS targets into the Golgi region of NIH 3T3 cells via the first 35 amino acids, including N-myristoylation and palmitoylation sites, and its overall membrane association requires N-myristoylation but not cysteine palmitoylation. These results suggest a novel role for fatty acylation in the specific compartmentalization of eNOS and most likely, for other dually acylated proteins, to the Golgi complex.
引用
收藏
页码:1525 / 1535
页数:11
相关论文
共 48 条
[41]   HORMONAL-REGULATION OF CAVEOLAE INTERNALIZATION [J].
SMART, EJ ;
YING, YS ;
ANDERSON, RGW .
JOURNAL OF CELL BIOLOGY, 1995, 131 (04) :929-938
[42]   PROTEIN-KINASE-C ACTIVATORS INHIBIT RECEPTOR-MEDIATED POTOCYTOSIS BY PREVENTING INTERNALIZATION OF CAVEOLAE [J].
SMART, EJ ;
FOSTER, DC ;
YING, YS ;
KAMEN, BA ;
ANDERSON, RGW .
JOURNAL OF CELL BIOLOGY, 1994, 124 (03) :307-313
[43]   A SIGNAL LOCATED WITHIN AMINO-ACIDS 1-27 OF GAD65 IS REQUIRED FOR ITS TARGETING TO THE GOLGI-COMPLEX REGION [J].
SOLIMENA, M ;
DIRKX, R ;
RADZYNSKI, M ;
MUNDIGL, O ;
DECAMILLI, P .
JOURNAL OF CELL BIOLOGY, 1994, 126 (02) :331-341
[44]   ANALYSIS OF TRAFFICKING OF REV AND TRANSDOMINANT REV PROTEINS IN LIVING CELLS USING GREEN FLUORESCENT PROTEIN FUSIONS - TRANSDOMINANT REV BLOCKS THE EXPORT OF REV FROM THE NUCLEUS TO THE CYTOPLASM [J].
STAUBER, R ;
GAITANARIS, GA ;
PAVLAKIS, GN .
VIROLOGY, 1995, 213 (02) :439-449
[45]   A HETEROTRIMERIC G-PROTEIN, G-ALPHA-I-3, ON GOLGI MEMBRANES REGULATES THE SECRETION OF A HEPARAN-SULFATE PROTEOGLYCAN IN LLC-PK1 EPITHELIAL-CELLS [J].
STOW, JL ;
DEALMEIDA, JB ;
NARULA, N ;
HOLTZMAN, EJ ;
ERCOLANI, L ;
AUSIELLO, DA .
JOURNAL OF CELL BIOLOGY, 1991, 114 (06) :1113-1124
[46]   Rapid plasma membrane anchoring of newly synthesized p59(fyn): Selective requirement for NH2-terminal myristoylation and palmitoylation at cysteine-3 [J].
vantHof, W ;
Resh, MD .
JOURNAL OF CELL BIOLOGY, 1997, 136 (05) :1023-1035
[47]   Bradykinin-stimulated protein tyrosine phosphorylation promotes endothelial nitric oxide synthase translocation to the cytoskeleton [J].
Venema, VJ ;
Marrero, MB ;
Venema, RC .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 226 (03) :703-710
[48]   LIPID MODIFICATIONS OF TRIMERIC G-PROTEINS [J].
WEDEGAERTNER, PB ;
WILSON, PT ;
BOURNE, HR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (02) :503-506