Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature

被引:288
作者
Sakai, T [1 ]
Alexandridis, P [1 ]
机构
[1] SUNY Buffalo, Dept Chem & Biol Engn, Buffalo, NY 14260 USA
关键词
D O I
10.1021/la049514s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A single-step synthesis of gold nanoparticles with an average diameter of similar to10 nm from hydrogen tetrachloroaureate(III) hydrate (HAuCl(4)(.)3H(2)O) has been achieved in air-saturated aqueous solutions that contain poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers but not any other reducing agent. These amphiphilic block copolymers act as both reductants and colloidal stabilizers and prove very efficient in both functions. The formation of gold nanoparticles is controlled by the overall molecular weight and relative block length of the block copolymer. The synthesis procedure reported here is environmentally benign and economic, as it involves the minimum possible number of components: it uses water as the solvent, it uses commercially available polymers, it proceeds fast to completion, and it results in a "ready-to-use" product.
引用
收藏
页码:8426 / 8430
页数:5
相关论文
共 38 条
[1]   Shape-controlled synthesis of colloidal platinum nanoparticles [J].
Ahmadi, TS ;
Wang, ZL ;
Green, TC ;
Henglein, A ;
ElSayed, MA .
SCIENCE, 1996, 272 (5270) :1924-1926
[2]   A record nine different phases (four cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system of an amphiphilic block copolymer and selective solvents (water and oil) [J].
Alexandridis, P ;
Olsson, U ;
Lindman, B .
LANGMUIR, 1998, 14 (10) :2627-2638
[3]   Solvent-regulated ordering in block copolymers [J].
Alexandridis, P ;
Spontak, RJ .
CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 1999, 4 (02) :130-139
[4]   MICELLIZATION OF POLY(ETHYLENE OXIDE)-POLY(PROPYLENE OXIDE)-POLY(ETHYLENE OXIDE) TRIBLOCK COPOLYMERS IN AQUEOUS-SOLUTIONS - THERMODYNAMICS OF COPOLYMER ASSOCIATION [J].
ALEXANDRIDIS, P ;
HOLZWARTH, JF ;
HATTON, TA .
MACROMOLECULES, 1994, 27 (09) :2414-2425
[5]  
BRONSTEIN LM, 1998, NANOPARTICLES NANOST
[6]   ULTRAFINE AND SPECIFIC CATALYSTS AFFORDING EFFICIENT HYDROGEN EVOLUTION FROM WATER UNDER VISIBLE-LIGHT ILLUMINATION [J].
BRUGGER, PA ;
CUENDET, P ;
GRATZEL, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1981, 103 (11) :2923-2927
[7]   An improved synthesis of high-aspect-ratio gold nanorods [J].
Busbee, BD ;
Obare, SO ;
Murphy, CJ .
ADVANCED MATERIALS, 2003, 15 (05) :414-+
[8]   Sonochemical formation of gold sols [J].
Caruso, RA ;
Ashokkumar, M ;
Grieser, F .
LANGMUIR, 2002, 18 (21) :7831-7836
[9]   Preparation and assembly of colloidal gold nanoparticles in CTAB-stabilized reverse microemulsion [J].
Chen, FX ;
Xu, GQ ;
Hor, TSA .
MATERIALS LETTERS, 2003, 57 (21) :3282-3286
[10]   Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J].
Daniel, MC ;
Astruc, D .
CHEMICAL REVIEWS, 2004, 104 (01) :293-346