Integrated computational materials discovery of silver doped tin sulfide as a thermoelectric material

被引:59
作者
Bera, Chandan [1 ]
Jacob, Stephane [2 ]
Opahle, Ingo [1 ]
Gunda, N. S. Harsha [1 ]
Chmielowski, Radoslaw [2 ]
Dennler, Gilles [2 ]
Madsen, Georg K. H. [1 ]
机构
[1] Ruhr Univ Bochum, ICAMS, Dept Atomist Modelling & Simulat, Bochum, Germany
[2] IMRA Europe SAS, F-06904 Sophia Antipolis, France
关键词
1ST-PRINCIPLES CALCULATIONS; THERMAL-CONDUCTIVITY; SOLAR-CELLS; THIN-FILMS; SNS; DEPENDENCE; CRYSTALS; DESIGN; AG;
D O I
10.1039/c4cp02871f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accelerating the discovery of new materials is crucial for realizing the vision of need-driven materials development. In the present study we employ an integrated computational and experimental approach to search for new thermoelectric materials. High-throughput first principles calculations of thermoelectric transport coefficients are used to screen sulfide compounds conforming to the boundary conditions of abundant and innocuous components. A further computational screening step of substitutional defects is introduced, whereby SnS doped with monovalent cations is identified as having favorable transport properties. By silver doping of SnS under S-rich conditions an electric conductivity more than an order of magnitude higher than reported previously is realized. The obtained thermoelectric power-factor at room temperature is comparable to the state of the art for thermoelectric materials based on earth abundant, non-toxic elements. The high-throughput screening of extrinsic defects solves a long standing bottleneck in search of new thermoelectric materials. We show how the intrinsic carrier concentration in the low-temperature phase of SnSe is two orders of magnitude higher than in SnS. We furthermore find that the carrier concentration in SnSe can still be further optimized by silver doping.
引用
收藏
页码:19894 / 19899
页数:6
相关论文
共 37 条
[1]   INVESTIGATIONS ON SNS [J].
ALBERS, W ;
VINK, HJ ;
HAAS, C ;
WASSCHER, JD .
JOURNAL OF APPLIED PHYSICS, 1961, 32 :2220-&
[2]  
[Anonymous], 2011, MIN COMM SUMM 2011
[3]   Tellurium-Free Thermoelectric: The Anisotropic n-Type Semiconductor Bi2S3 [J].
Biswas, Kanishka ;
Zhao, Li-Dong ;
Kanatzidis, Mercouri G. .
ADVANCED ENERGY MATERIALS, 2012, 2 (06) :634-638
[4]   Ab initio Calculations of Intrinsic Point Defects in ZnSb [J].
Bjerg, Lasse ;
Madsen, Georg K. H. ;
Iversen, Bo B. .
CHEMISTRY OF MATERIALS, 2012, 24 (11) :2111-2116
[5]   Enhanced Thermoelectric Properties in Zinc Antimonides [J].
Bjerg, Lasse ;
Madsen, Georg K. H. ;
Iversen, Bo B. .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :3907-3914
[6]   Thermoelectric properties of p-type polycrystalline SnSe doped with Ag [J].
Chen, Cheng-Lung ;
Wang, Heng ;
Chen, Yang-Yuan ;
Day, Tristan ;
Snyder, G. Jeffrey .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (29) :11171-11176
[7]  
Curtarolo S, 2013, NAT MATER, V12, P191, DOI [10.1038/nmat3568, 10.1038/NMAT3568]
[8]   Low resistive micrometer-thick SnS:Ag films for optoelectronic applications [J].
Devika, M. ;
Reddy, N. Koteeswara ;
Ramesh, K. ;
Gunasekhar, K. R. ;
Gopal, E. S. R. ;
Reddy, K. T. Ramakrishna .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (08) :G727-G733
[9]   Effect of substitution of Sn for Bi on structural and electrical transport properties of SnS thin films [J].
Dussan, A. ;
Mesa, F. ;
Gordillo, G. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (09) :2403-2407
[10]   Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations [J].
Gaultois, Michael W. ;
Sparks, Taylor D. ;
Borg, Christopher K. H. ;
Seshadri, Ram ;
Bonificio, William D. ;
Clarke, David R. .
CHEMISTRY OF MATERIALS, 2013, 25 (15) :2911-2920