Raman nanometrology of graphene: Temperature and substrate effects

被引:115
作者
Calizo, Irene [1 ]
Ghosh, Suchismita [1 ]
Bao, Wenzhong [2 ]
Miao, Feng [2 ]
Lau, Chun Ning [2 ]
Balandin, Alexander A. [1 ]
机构
[1] Univ Calif Riverside, Dept Elect Engn, Nanodevice Lab, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
关键词
Graphene; Carbon; Nanostructures; Raman spectroscopy; SCATTERING; GRAPHITE; SPECTRA; GROWTH; FILMS;
D O I
10.1016/j.ssc.2009.01.036
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Graphene has been a subject of intense interest because of its unique physical properties. Raman spectroscopy became a valuable tool for determining the number of graphene layers and assessing their quality. Here we review our recent results on the effects of substrates and temperatures on Raman signatures of graphene. Specifically, we considered graphene on GaAs, glass, sapphire, standard Si/SiO2 substrates and suspended across trenches in Si/SiO2 wafers. We found consistent values for Raman G peak frequency in the suspended graphene and graphene on standard substrates. It was relatively strongly down-shifted by similar to 5 cm(-1) for graphene on A-plane sapphire. Raman inspection of many spots on graphene layers on glass indicated that in some instances G peak was split into doublets. We investigated the temperature dependence of the Raman spectrum of graphene and found that G peak red shifts with increasing temperature despite graphene's negative coefficient of thermal expansion. Using the measured temperature coefficient of graphene G peak we were able to adopt Raman spectroscopy for determining the thermal conductivity of graphene. The knowledge of the temperature and substrate effects on graphene Raman spectra is important for extending the application of micro-Raman spectroscopy as a nanometrology tool for graphene characterization and graphene device fabrication. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1132 / 1135
页数:4
相关论文
共 27 条
[1]   Visibility of graphene flakes on a dielectric substrate [J].
Abergel, D. S. L. ;
Russell, A. ;
Fal'ko, Vladimir I. .
APPLIED PHYSICS LETTERS, 2007, 91 (06)
[2]  
BALANDIN AA, 2008, INT S GRAPH DEV AIZ
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]   Phonon anharmonicities in graphite and graphene [J].
Bonini, Nicola ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
PHYSICAL REVIEW LETTERS, 2007, 99 (17)
[5]   Spectroscopic Raman Nanometrology of Graphene and Graphene Multilayers on Arbitrary Substrates [J].
Calizo, I. ;
Teweldebrhan, D. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. ;
Balandin, A. A. .
INTERNATIONAL SYMPOSIUM ON ADVANCED NANODEVICES AND NANOTECHNOLOGY, 2008, 109
[6]   Temperature dependence of the Raman spectra of graphene and graphene multilayers [J].
Calizo, I. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
NANO LETTERS, 2007, 7 (09) :2645-2649
[7]   Variable temperature Raman microscopy as a nanometrology tool for graphene layers and graphene-based devices [J].
Calizo, I. ;
Miao, F. ;
Bao, W. ;
Lau, C. N. ;
Balandin, A. A. .
APPLIED PHYSICS LETTERS, 2007, 91 (07)
[8]   The effect of substrates on the Raman spectrum of graphene: Graphene-on-sapphire and graphene-on-glass [J].
Calizo, Irene ;
Bao, Wenzhong ;
Miao, Feng ;
Lau, Chun Ning ;
Balandin, Alexander A. .
APPLIED PHYSICS LETTERS, 2007, 91 (20)
[9]   Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect [J].
Castro, Eduardo V. ;
Novoselov, K. S. ;
Morozov, S. V. ;
Peres, N. M. R. ;
Dos Santos, J. M. B. Lopes ;
Nilsson, Johan ;
Guinea, F. ;
Geim, A. K. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (21)
[10]   Intrinsic and extrinsic performance limits of graphene devices on SiO2 [J].
Chen, Jian-Hao ;
Jang, Chaun ;
Xiao, Shudong ;
Ishigami, Masa ;
Fuhrer, Michael S. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :206-209