Impact of the N-terminal amino acid on targeted protein degradation

被引:65
作者
Meinnel, Thierry [1 ]
Serero, Alexandre [1 ]
Giglione, Carmela [1 ]
机构
[1] CNRS, UPR 2355, Inst Sci Vegetal, F-91198 Gif Sur Yvette, France
关键词
aminopeptidase; co-translational; deformylase; leucine; methionine; proteasome; protein; ubiquitin;
D O I
10.1515/BC.2006.107
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The N-terminus of any protein may be used as a destabilization signal for targeted protein degradation. In the eukaryotic cytosol, the signal-the so-called N-degron-is recognized for degradation by (i) the Wend rule, a well-described degradation process involving epsilon-ubiquitination; or (ii) N-terminal ubiquitination, a more recently described pathway. Dedicated E3 ubiquitin ligases known as N-recognins then act on the protein. The proteolytic pathways involve ATP-dependent chambered proteases, such as the 26S proteasome in the cytosol, which generate short oligopeptides. The N-terminus of the polypeptide chain is also important for post-proteasome degradation by specific aminopeptidases, which complete peptide cleavage to generate free amino acids. Finally, in each compartment of the eukaryotic cell, N-terminal methionine excision creates a variety of N-termini for mature proteins. It has recently been shown that the N-terminal methionine excision pathway has a major impact early in targeted protein degradation.
引用
收藏
页码:839 / 851
页数:13
相关论文
共 130 条
[21]   METHIONINE AMINOPEPTIDASE GENE OF ESCHERICHIA-COLI IS ESSENTIAL FOR CELL-GROWTH [J].
CHANG, SYP ;
MCGARY, EC ;
CHANG, S .
JOURNAL OF BACTERIOLOGY, 1989, 171 (07) :4071-4072
[22]   Leucine aminopeptidase RNAs, proteins, and activities increase in response to water deficit, salinity, and the wound signals systemin, methyl jasmonate, and abscisic acid [J].
Chao, WS ;
Gu, YQ ;
Pautot, V ;
Bray, EA ;
Walling, LL .
PLANT PHYSIOLOGY, 1999, 120 (04) :979-992
[23]   Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor [J].
Chen, DZ ;
Patel, DV ;
Hackbarth, CJ ;
Wang, W ;
Dreyer, G ;
Young, DC ;
Margolis, PS ;
Wu, C ;
Ni, ZJ ;
Trias, J ;
White, RJ ;
Yuan, ZY .
BIOCHEMISTRY, 2000, 39 (06) :1256-1262
[24]   The specificity in vivo of two distinct methionine aminopeptidases in Saccharomyces cerevisiae [J].
Chen, SP ;
Vetro, JA ;
Chang, YH .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 2002, 398 (01) :87-93
[25]   Control of peptide product sizes by the energy-dependent protease ClpAP [J].
Choi, KH ;
Licht, S .
BIOCHEMISTRY, 2005, 44 (42) :13921-13931
[26]   Proteolysis: from the lysosome to ubiquitin and the proteasome [J].
Ciechanover, A .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2005, 6 (01) :79-86
[27]   N-terminal ubiquitination: more protein substrates join in [J].
Ciechanover, A ;
Ben-Saadon, R .
TRENDS IN CELL BIOLOGY, 2004, 14 (03) :103-106
[28]   The ubiquitin-proteasome pathway: on protein death and cell life [J].
Ciechanover, A .
EMBO JOURNAL, 1998, 17 (24) :7151-7160
[29]   N-myristoylation determines dual targeting of mammalian NADH-cytochrome b(5) reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning [J].
Colombo, S ;
Longhi, R ;
Alcaro, S ;
Ortuso, F ;
Sprocati, T ;
Flora, A ;
Borgese, N .
JOURNAL OF CELL BIOLOGY, 2005, 168 (05) :735-745
[30]   Solution structure of nickel-peptide deformylase [J].
Dardel, F ;
Ragusa, S ;
Lazennec, C ;
Blanquet, S ;
Meinnel, T .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (03) :501-513