Genetic and Epigenetic Heterogeneity in Cancer: A Genome-Centric Perspective

被引:108
作者
Heng, Henry H. Q. [1 ,2 ,3 ]
Bremer, Steven W. [1 ]
Stevens, Joshua B. [1 ]
Ye, Karen J. [4 ]
Liu, Guo [1 ]
Ye, Christine J. [1 ]
机构
[1] Wayne State Univ, Ctr Mol Med & Genet, Sch Med, Detroit, MI 48201 USA
[2] Wayne State Univ, Dept Pathol, Sch Med, Detroit, MI 48201 USA
[3] Wayne State Univ, Karmanos Canc Inst, Sch Med, Detroit, MI 48201 USA
[4] SeeDNA Biotech Inc, Windsor, ON, Canada
关键词
CHROMOSOME-ABERRATIONS; DNA METHYLATION; EXTRACELLULAR-MATRIX; SOMATIC MUTATION; HUMAN BREAST; TUMOR-CELLS; IN-SITU; P53; PROGRESSION; DYNAMICS;
D O I
10.1002/jcp.21799
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Genetic and epigenetic heterogeneity (the main form of non-genetic heterogeneity) are key elements in cancer progression and drug resistance, as they provide needed population diversity, complexity, and robustness. Despite drastically increased evidence of multiple levels of heterogeneity in cancer, the general approach has been to eliminate the "noise" of heterogeneity to establish genetic and epigenetic patterns. In particular, the appreciation of new types of epigenetic regulation like non-coding RNA, have led to the hope of solving the mystery of cancer that the current genetic theories seem to be unable to achieve. In this mini-review,we have briefly analyzed a number of mis-conceptions regarding cancer heterogeneity, followed by the re-evaluation of cancer heterogeneity within a framework of the genome-centric concept of evolution. The analysis of the relationship between gene, epigenetic and genome level heterogeneity, and the challenges of measuring heterogeneity among multiple levels have been discussed. Further, we propose that measuring genome level heterogeneity represents an effective strategy in the study of cancer and other types of complex diseases, as emphasis on the pattern of system evolution rather than specific pathways provides a global and synthetic approach. Compared to the degree of heterogeneity, individual molecular pathways will have limited predictability during stochastic cancer evolution where genome dynamics (reflected by karyotypic heterogeneity) will dominate. J. Cell. Physiol. 220: 538-547, 2009. (C) 2009 Wiley-Liss, Inc.
引用
收藏
页码:538 / 547
页数:10
相关论文
共 93 条
[1]   Chromosome aberrations in solid tumors [J].
Albertson, DG ;
Collins, C ;
McCormick, F ;
Gray, JW .
NATURE GENETICS, 2003, 34 (04) :369-376
[2]   Global view of bionetwork dynamics: adaptive landscape [J].
Ao, Ping .
JOURNAL OF GENETICS AND GENOMICS, 2009, 36 (02) :63-73
[3]   Intratumoral heterogeneity in breast carcinoma revealed by laser-microdissection and comparative genomic hybridization [J].
Aubele, M ;
Mattis, A ;
Zitzelsberger, H ;
Walch, A ;
Kremer, M ;
Hutzler, P ;
Höfler, H ;
Werner, M .
CANCER GENETICS AND CYTOGENETICS, 1999, 110 (02) :94-102
[4]   aCGH local copy number aberrations associated with overall copy number genomic instability in colorectal cancer: Coordinate involvement of the regions including BCR and ABL [J].
Bartos, Jeremy D. ;
Gaile, Daniel P. ;
McQuaid, Devin E. ;
Conroy, Jeffrey M. ;
Darbary, Huferesh ;
Nowak, Norma J. ;
Block, Annemarie ;
Petrelli, Nicholas J. ;
Mittelman, Arnold ;
Stoler, Daniel L. ;
Anderson, Garth R. .
MUTATION RESEARCH-FUNDAMENTAL AND MOLECULAR MECHANISMS OF MUTAGENESIS, 2007, 615 (1-2) :1-11
[5]   Genomic mechanisms and measurement of structural and numerical instability in cancer cells [J].
Bayani, Jane ;
Selvarajah, Shamini ;
Maire, Georges ;
Vukovic, Bisera ;
Al-Romaih, Khaldoun ;
Zielenska, Maria ;
Squire, Jeremy A. .
SEMINARS IN CANCER BIOLOGY, 2007, 17 (01) :5-18
[6]   DNA methylation and gene silencing in cancer [J].
Baylin S.B. .
Nature Clinical Practice Oncology, 2005, 2 (Suppl 1) :S4-S11
[7]   The mammalian epigenome [J].
Bernstein, Bradley E. ;
Meissner, Alexander ;
Lander, Eric S. .
CELL, 2007, 128 (04) :669-681
[8]   Human cancers express a mutator phenotype [J].
Bielas, Jason H. ;
Loeb, Keith R. ;
Rubin, Brian P. ;
True, Lawrence D. ;
Loeb, Lawrence A. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (48) :18238-18242
[9]   Microenvironmental regulators of tissue structure and function also regulate tumor induction and progression: The role of extracellular matrix and its degrading enzymes [J].
Bissell, M. J. ;
Kenny, P. A. ;
Radisky, D. C. .
MOLECULAR APPROACHES TO CONTROLLING CANCER, 2005, 70 :343-356
[10]   Ultraconserved regions encoding ncRNAs are, altered in human leukemias and carcinomas [J].
Calin, George A. ;
Liu, Chang-Gong ;
Ferracin, Manuela ;
Hyslop, Terry ;
Spizzo, Riccardo ;
Sevignani, Cinzia ;
Fabbri, Muller ;
Cimmino, Amelia ;
Lee, Eun Joo ;
Wojcik, Sylwia E. ;
Shimizu, Masayoshi ;
Tili, Esmerina ;
Rossi, Simona ;
Taccioli, Cristian ;
Pichiorri, Flavia ;
Liu, Xiuping ;
Zupo, Simona ;
Herlea, Vlad ;
Gramantieri, Laura ;
Lanza, Giovanni ;
Alder, Hansjuerg ;
Rassenti, Laura ;
Volinia, Stefano ;
Schmittgen, Thomas D. ;
Kipps, Thomas J. ;
Negrini, Massimo ;
Croce, Carlo M. .
CANCER CELL, 2007, 12 (03) :215-229