Quantum phase transitions in matrix product systems

被引:121
作者
Wolf, Michael M.
Ortiz, Gerardo
Verstraete, Frank
Cirac, J. Ignacio
机构
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[3] CALTECH, Inst Quantum Informat, Pasadena, CA 91125 USA
关键词
D O I
10.1103/PhysRevLett.97.110403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate quantum phase transitions (QPTs) in spin chain systems characterized by local Hamiltonians with matrix product ground states. We show how to theoretically engineer such QPT points between states with predetermined properties. While some of the characteristics of these transitions are familiar, like the appearance of singularities in the thermodynamic limit, diverging correlation length, and vanishing energy gap, others differ from the standard paradigm: In particular, the ground state energy remains analytic, and the entanglement entropy of a half-chain stays finite. Examples demonstrate that these kinds of transitions can occur at the triple point of "conventional" QPTs.
引用
收藏
页数:4
相关论文
共 33 条
[11]   Quantum phase transition in spin-3/2 systems on the hexagonal lattice - optimum ground state approach [J].
Niggemann, H ;
Klumper, A ;
Zittartz, J .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1997, 104 (01) :103-110
[12]   Ground state phase diagram of a spin-2 antiferromagnet on the square lattice [J].
Niggemann, H ;
Klümper, A ;
Zittartz, J .
EUROPEAN PHYSICAL JOURNAL B, 2000, 13 (01) :15-19
[13]  
OSBORNE T, QUANTPH0508031
[14]   Three-spin interactions in optical lattices and criticality in cluster Hamiltonians [J].
Pachos, JK ;
Plenio, MB .
PHYSICAL REVIEW LETTERS, 2004, 93 (05) :056402-1
[15]   On the entanglement entropy for an XY spin chain [J].
Peschel, I .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[16]   Entropy, entanglement, and area: Analytical results for harmonic lattice systems [J].
Plenio, MB ;
Eisert, J ;
Dreissig, J ;
Cramer, M .
PHYSICAL REVIEW LETTERS, 2005, 94 (06)
[17]   A one-way quantum computer [J].
Raussendorf, R ;
Briegel, HJ .
PHYSICAL REVIEW LETTERS, 2001, 86 (22) :5188-5191
[18]   Entanglement entropy of random quantum critical points in one dimension [J].
Refael, G ;
Moore, JE .
PHYSICAL REVIEW LETTERS, 2004, 93 (26)
[19]  
RUELLE D, 1989, STAT MECH RIGOROUS R, P142
[20]  
Sachdev S., 1999, QUANTUM PHASE TRANSI, DOI [DOI 10.1017/CBO9780511622540, DOI 10.1017/CBO9780511973765]