A model study of the possible effect of beryllium grain sound speed anisotropy on ICF capsule implosions

被引:8
作者
Cook, RC [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
关键词
D O I
10.13182/FST02-A17893
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The sound speed in a Be grain is markedly different in orthogonal directions due to an anisotropic Young's modulus. The impact of this fact on ICF capsules machined from multi-crystalline Be is not clear, but is of concern if the shock velocity is likewise grain orientation dependent. In this paper the expected inner wall break out profile due to grain affected shock velocity variations is calculated for a Be capsule, as a function of the grain size and effective shock velocity anisotropy factor p = v(parallel to)/v(perpendicular to), where v(parallel to) and v(perpendicular to) are the effective maximum and minimum orthogonal shock speeds in a grain. In this simple model it is assumed that grain boundaries have no effect other than to mark the location where the shock speed changes as it moves from one grain to another. The grain structure of bulk beryllium is modeled by randomly placing N points in a volume V to define Wigner-Seitz cells (grains) of average volume V/N. Each grain is given a random orientation. The spherical shell wall is modeled by a 150 pm thick planar slab of this multi-crystalline material, 2piR in length where R is the capsule radius, taken to be 1000 mum. The slab is sampled at 3600 points along its 2piR length, at each point the average shock velocity through the sample is determined based on the model slab grain structure at that point. This data is used to create the expected spatial breakout profile, which is then Fourier transformed to give a power spectral representation that is compared to the current outside surface design specification. In order to match the design specification, grain diameters less than 10 Pm and an effective shock velocity anisotropy, p, of less than 1.001 are necessary.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 25 条
[1]   Forming uniform HD layers in shells using infrared radiation [J].
Bittner, DN ;
Collins, GW ;
Monsler, E ;
Letts, S .
FUSION TECHNOLOGY, 1999, 35 (02) :244-249
[2]   Preparation and characterization of beryllium doped organic plasma polymer coatings [J].
Brusasco, R ;
Letts, S ;
Miller, P ;
Saculla, M ;
Cook, R .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1996, 14 (03) :1019-1024
[3]   Evaluation of B4C as an ablator material for NIF capsules [J].
Burnham, AK ;
Alford, CS ;
Makowiecki, DM ;
Dittrich, TR ;
Wallace, RJ ;
Honea, EC ;
King, CM ;
Steinman, D .
FUSION TECHNOLOGY, 1997, 31 (04) :456-462
[4]   Infrared redistribution of D-2 and HD layers for inertial confinement fusion [J].
Collins, GW ;
Bittner, DN ;
Monsler, E ;
Letts, S ;
Mapoles, ER ;
Bernat, TP .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1996, 14 (05) :2897-2900
[5]   SURFACE-ROUGHNESS SCALING OF PLASMA POLYMER-FILMS [J].
COLLINS, GW ;
LETTS, SA ;
FEARON, EM ;
MCEACHERN, RL ;
BERNAT, TP .
PHYSICAL REVIEW LETTERS, 1994, 73 (05) :708-711
[6]   Review of indirect-drive ignition design options for the National Ignition Facility [J].
Dittrich, TR ;
Haan, SW ;
Marinak, MM ;
Pollaine, SM ;
Hinkel, DE ;
Munro, DH ;
Verdon, CP ;
Strobel, GL ;
McEachern, R ;
Cook, RC ;
Roberts, CC ;
Wilson, DC ;
Bradley, PA ;
Foreman, LR ;
Varnum, WS .
PHYSICS OF PLASMAS, 1999, 6 (05) :2164-2170
[7]   Capsule design for the National Ignition Facility [J].
Dittrich, TR ;
Haan, SW ;
Marinak, MM ;
Hinkel, DE ;
Pollaine, SM ;
McEachern, R ;
Cook, RC ;
Roberts, CC ;
Wilson, DC ;
Bradley, PA ;
Varnum, WS .
LASER AND PARTICLE BEAMS, 1999, 17 (02) :217-224
[8]   NIF capsule design update [J].
Dittrich, TR ;
Haan, SW ;
Pollaine, S ;
Burnham, AK ;
Strobel, GL .
FUSION TECHNOLOGY, 1997, 31 (04) :402-405
[9]   DESIGN AND MODELING OF IGNITION TARGETS FOR THE NATIONAL IGNITION FACILITY [J].
HAAN, SW ;
POLLAINE, SM ;
LINDL, JD ;
SUTER, LJ ;
BERGER, RL ;
POWERS, LV ;
ALLEY, WE ;
AMENDT, PA ;
FUTTERMAN, JA ;
LEVEDAHL, WK ;
ROSEN, MD ;
ROWLEY, DP ;
SACKS, RA ;
SHESTAKOV, AI ;
STROBEL, GL ;
TABAK, M ;
WEBER, SV ;
ZIMMERMAN, GB ;
KRAUSER, WJ ;
WILSON, DC ;
COGGESHALL, SV ;
HARRIS, DB ;
HOFFMAN, NM ;
WILDE, BH .
PHYSICS OF PLASMAS, 1995, 2 (06) :2480-2487
[10]   The National Ignition Facility [J].
Hogan, WJ ;
Moses, EI ;
Warner, BE ;
Sorem, MS ;
Soures, JM .
NUCLEAR FUSION, 2001, 41 (05) :567-573