Vex-seq: high-throughput identification of the impact of genetic variation on pre-mRNA splicing efficiency

被引:60
作者
Adamson, Scott I. [1 ]
Zhan, Lijun [1 ]
Graveley, Brenton R. [1 ]
机构
[1] UConn Hlth, Inst Syst Genom, Dept Genet & Genome Sci, Farmington, CT 06030 USA
来源
GENOME BIOLOGY | 2018年 / 19卷
关键词
SEQUENCE MOTIFS; BRANCHPOINTS; NONSENSE; ELEMENTS; DISEASE; CONTEXT; CODE;
D O I
10.1186/s13059-018-1437-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Understanding the functional impact of genomic variants is a major goal of modern genetics and personalized medicine. Although many synonymous and non-coding variants act through altering the efficiency of pre-mRNA splicing, it is difficult to predict how these variants impact pre-mRNA splicing. Here, we describe a massively parallel approach we use to test the impact on pre-mRNA splicing of 2059 human genetic variants spanning 110 alternative exons. This method, called variant exon sequencing (Vex-seq), yields data that reinforce known mechanisms of pre-mRNA splicing, identifies variants that impact pre-mRNA splicing, and will be useful for increasing our understanding of genome function.
引用
收藏
页数:12
相关论文
共 31 条
[21]   Learning the Sequence Determinants of Alternative Splicing from Millions of Random Sequences [J].
Rosenberg, Alexander B. ;
Patwardhan, Rupali P. ;
Shendure, Jay ;
Seelig, Georg .
CELL, 2015, 163 (03) :698-711
[22]   RNA mis-splicing in disease [J].
Scotti, Marina M. ;
Swanson, Maurice S. .
NATURE REVIEWS GENETICS, 2016, 17 (01) :19-32
[23]   rMATS: Robust and flexible detection of differential alternative splicing from replicate RNA-Seq data [J].
Shen, Shihao ;
Park, Juw Won ;
Lu, Zhi-xiang ;
Lin, Lan ;
Henry, Michael D. ;
Wu, Ying Nian ;
Zhou, Qing ;
Xing, Yi .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (51) :E5593-E5601
[24]   Machine learning annotation of human branchpoints [J].
Signal, Bethany ;
Gloss, Brian S. ;
Dinger, Marcel E. ;
Mercer, Tim R. .
BIOINFORMATICS, 2018, 34 (06) :920-927
[25]   The effects of structure on pre-mRNA processing and stability [J].
Soemedi, Rachel ;
Cygan, Kamil J. ;
Rhine, Christy L. ;
Glidden, David T. ;
Taggart, Allison J. ;
Lin, Chien-Ling ;
Fredericks, Alger M. ;
Fairbrother, William G. .
METHODS, 2017, 125 :36-44
[26]   Pathogenic variants that alter protein code often disrupt splicing [J].
Soemedi, Rachel ;
Cygan, Kamil J. ;
Rhine, Christy L. ;
Wang, Jing ;
Bulacan, Charlston ;
Yang, John ;
Bayrak-Toydemir, Pinar ;
McDonald, Jamie ;
Fairbrother, William G. .
NATURE GENETICS, 2017, 49 (06) :848-+
[27]   Does conservation account for splicing patterns? [J].
Wainberg, Michael ;
Alipanahi, Babak ;
Frey, Brendan .
BMC GENOMICS, 2016, 17
[28]   Intronic splicing enhancers, cognate splicing factors and context-dependent regulation rules [J].
Wang, Yang ;
Ma, Meng ;
Xiao, Xinshu ;
Wang, Zefeng .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2012, 19 (10) :1044-U104
[29]   The human splicing code reveals new insights into the genetic determinants of disease [J].
Xiong, Hui Y. ;
Alipanahi, Babak ;
Lee, Leo J. ;
Bretschneider, Hannes ;
Merico, Daniele ;
Yuen, Ryan K. C. ;
Hua, Yimin ;
Gueroussov, Serge ;
Najafabadi, Hamed S. ;
Hughes, Timothy R. ;
Morris, Quaid ;
Barash, Yoseph ;
Krainer, Adrian R. ;
Jojic, Nebojsa ;
Scherer, Stephen W. ;
Blencowe, Benjamin J. ;
Frey, Brendan J. .
SCIENCE, 2015, 347 (6218)
[30]   Bayesian prediction of tissue-regulated splicing using RNA sequence and cellular context [J].
Xiong, Hui Yuan ;
Barash, Yoseph ;
Frey, Brendan J. .
BIOINFORMATICS, 2011, 27 (18) :2554-2562