Meanders: exact asymptotics

被引:25
作者
Di Francesco, P [1 ]
Golinelli, O [1 ]
Guitter, E [1 ]
机构
[1] CEA Saclay, Serv Phys Theor, F-91191 Gif Sur Yvette, France
关键词
meanders; fully packed loop models; Coulomb gas; 2D quantum gravity;
D O I
10.1016/S0550-3213(99)00753-1
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We conjecture that meanders are governed by the gravitational version of a c = -4 two-dimensional conformal field theory, allowing for exact predictions for the meander configuration exponent alpha = root 29 (root 29 + root 5) / 12, and the semi-meander exponent <(alpha)over bar> = 1 root 11(root 29 + root 5)/24. This result follows from an interpretation of meanders as pairs of fully packed loops on a random surface, described by two c = -2 free fields. The above values agree with recent numerical estimates. We generalize these results to a score of meandric numbers with various geometries and arbitrary loop fugacities. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:699 / 712
页数:14
相关论文
共 24 条
[1]   Hermitian matrix model with plaquette interaction [J].
Chekhov, L ;
Kristjansen, C .
NUCLEAR PHYSICS B, 1996, 479 (03) :683-696
[2]   A scenario for the c<1 barrier in non-critical bosonic strings [J].
David, F .
NUCLEAR PHYSICS B, 1997, 487 (03) :633-649
[3]   CONFORMAL FIELD-THEORIES COUPLED TO 2-D GRAVITY IN THE CONFORMAL GAUGE [J].
DAVID, F .
MODERN PHYSICS LETTERS A, 1988, 3 (17) :1651-1656
[4]   Meander, folding, and arch statistics [J].
DiFrancesco, P ;
Golinelli, O ;
Guitter, E .
MATHEMATICAL AND COMPUTER MODELLING, 1997, 26 (8-10) :97-147
[5]   Meanders: A direct enumeration approach [J].
DiFrancesco, P ;
Golinelli, O ;
Guitter, E .
NUCLEAR PHYSICS B, 1996, 482 (03) :497-535
[6]   Meanders and the Temperley-Lieb algebra [J].
P. Di Francesco ;
O. Golinelli ;
E. Guitter .
Communications in Mathematical Physics, 1997, 186 (1) :1-59
[7]   CONFORMAL FIELD-THEORY AND 2-D QUANTUM-GRAVITY [J].
DISTLER, J ;
KAWAI, H .
NUCLEAR PHYSICS B, 1989, 321 (02) :509-527
[8]   EXACT PARTITION-FUNCTIONS AND CORRELATION-FUNCTIONS OF MULTIPLE HAMILTONIAN-WALKS ON THE MANHATTAN LATTICE [J].
DUPLANTIER, B ;
DAVID, F .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (3-4) :327-434
[9]   CRITICAL-BEHAVIOR IN A MODEL OF PLANAR RANDOM SURFACES [J].
DURHUUS, B ;
FROHLICH, J ;
JONSSON, T .
NUCLEAR PHYSICS B, 1984, 240 (04) :453-480
[10]   More on the exact solution of the O(n) model on a random lattice and an investigation of the case vertical bar n vertical bar>2 [J].
Eynard, B ;
Kristjansen, C .
NUCLEAR PHYSICS B, 1996, 466 (03) :463-487