FoxD3 regulation of Nodal in the Spemann organizer is essential for Xenopus dorsal mesoderm development

被引:41
作者
Steiner, Aaron B. [1 ]
Engleka, Mark J. [1 ]
Lu, Qun [1 ]
Piwarzyk, Eileen C. [1 ]
Yaklichkin, Sergey [1 ]
Lefebvre, Julie L. [1 ]
Walters, James W. [1 ]
Pineda-Salgado, Liliam [1 ]
Labosky, Patricia A. [1 ]
Kessler, Daniel S. [1 ]
机构
[1] Univ Penn, Sch Med, Dept Cell & Dev Biol, Philadelphia, PA 19104 USA
来源
DEVELOPMENT | 2006年 / 133卷 / 24期
关键词
Xenopus; FoxD3; forkhead; nodal; mesoderm; transcription;
D O I
10.1242/dev.02663
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Induction and patterning of the mesodermal germ layer is a key early step of vertebrate embryogenesis. We report that FoxD3 function in the Xenopus gastrula is essential for dorsal mesodermal development and for Nodal expression in the Spemann organizer. In embryos and explants, FoxD3 induced mesodermal genes, convergent extension movements and differentiation of axial tissues. Engrailed-FoxD3, but not VP16-FoxD3, was identical to native FoxD3 in mesoderm-inducing activity, indicating that FoxD3 functions as a transcriptional repressor to induce mesoderm. Antagonism of FoxD3 with VP16-FoxD3 or morpholino-knockdown of FoxD3 protein resulted in a complete block to axis formation, a loss of mesodermal gene expression, and an absence of axial mesoderm, indicating that transcriptional repression by FoxD3 is required for mesodermal development. FoxD3 induced mesoderm in a non-cell-autonomous manner, indicating a role for secreted inducing factors in the response to FoxD3. Consistent with this mechanism, FoxD3 was necessary and sufficient for the expression of multiple Nodal-related genes, and inhibitors of Nodal signaling blocked mesoderm induction by FoxD3. Therefore, FoxD3 is required for Nodal expression in the Spemann organizer and this function is essential for dorsal mesoderm formation.
引用
收藏
页码:4827 / 4838
页数:12
相关论文
共 108 条
[11]   The Vg1-related protein Gdf3 acts in a Nodal signaling pathway in the pre-gastrulation mouse embryo [J].
Chen, CH ;
Ware, SM ;
Sato, A ;
Houston-Hawkins, DE ;
Habas, R ;
Matzuk, MM ;
Shen, MM ;
Brown, CW .
DEVELOPMENT, 2006, 133 (02) :319-329
[12]   Smad4 and FAST-1 in the assembly of activin-responsive factor [J].
Chen, X ;
Weisberg, E ;
Fridmacher, V ;
Watanabe, M ;
Naco, G ;
Whitman, M .
NATURE, 1997, 389 (6646) :85-89
[13]  
Cheng AMS, 2000, DEVELOPMENT, V127, P1049
[14]   EGF-CFC proteins are essential coreceptors for the TGF-β signals Vg1 and GDF1 [J].
Cheng, SK ;
Olale, F ;
Bennett, JT ;
Brivanlou, AH ;
Schier, AF .
GENES & DEVELOPMENT, 2003, 17 (01) :31-36
[15]   The transcriptional control of trunk neural crest induction, survival, and delamination [J].
Cheung, M ;
Chaboissier, MC ;
Mynett, A ;
Hirst, E ;
Schedl, A ;
Briscoe, J .
DEVELOPMENTAL CELL, 2005, 8 (02) :179-192
[16]   MOLECULAR NATURE OF SPEMANNS ORGANIZER - THE ROLE OF THE XENOPUS HOMEOBOX GENE GOOSECOID [J].
CHO, KWY ;
BLUMBERG, B ;
STEINBEISSER, H ;
DEROBERTIS, EM .
CELL, 1991, 67 (06) :1111-1120
[17]   Human STELLAR, NANOG, and GDF3 genes are expressed in pluripotent cells and map to chromosome 12p13, a hotspot for teratocarcinoma [J].
Clark, AT ;
Rodriguez, RT ;
Bodnar, MS ;
Abeyta, MJ ;
Cedars, MI ;
Turek, PJ ;
Firpo, MT ;
Pera, RAR .
STEM CELLS, 2004, 22 (02) :169-179
[18]  
Clements D, 1999, DEVELOPMENT, V126, P4903
[19]  
CONLON FL, 1991, DEVELOPMENT, V111, P969
[20]  
Conlon FL, 1996, DEVELOPMENT, V122, P2427