Bounding the number of geometric permutations induced by k-transversals

被引:8
作者
Goodman, JE
Pollack, R
Wenger, R
机构
[1] NYU,COURANT INST MATH SCI,NEW YORK,NY 10012
[2] OHIO STATE UNIV,COLUMBUS,OH 43210
基金
美国国家科学基金会;
关键词
D O I
10.1006/jcta.1996.0072
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that a suitably separated family of n compact convex sets in R(d) can be met by k-flat transversals in at most O(k)(d2)(((2k+1-2)(k))((n)(k+1)))(k(d-k)), or for fixed k and d, O(n(k(k+1)(d-k)) different order types. This is the first non-trivial upper bound for 1 < k < d - 1, and generalizes (asymptotically) the best upper bounds known for line transversals in R, d > 2. (C) 1996 Academic Press, Inc.
引用
收藏
页码:187 / 197
页数:11
相关论文
共 9 条
[1]  
Bochnak J., 1987, Geometrie Algebrique Reelle
[2]   COMMON TANGENTS AND COMMON TRANSVERSALS [J].
CAPPELL, SE ;
GOODMAN, JE ;
PACH, J ;
POLLACK, R ;
SHARIR, M .
ADVANCES IN MATHEMATICS, 1994, 106 (02) :198-215
[3]   THE MAXIMUM NUMBER OF WAYS TO STAB N-CONVEX NONINTERSECTING SETS IN THE PLANE IS 2N-2 [J].
EDELSBRUNNER, H ;
SHARIR, M .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (01) :35-42
[4]  
Goodman J.E., 1993, NEW TRENDS DISCRETE, V10, P163
[5]   UPPER-BOUNDS FOR CONFIGURATIONS AND POLYTOPES IN RD [J].
GOODMAN, JE ;
POLLACK, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1986, 1 (03) :219-227
[6]   THE DIFFERENT WAYS OF STABBING DISJOINT CONVEX-SETS [J].
KATCHALSKI, M ;
LEWIS, T ;
LIU, A .
DISCRETE & COMPUTATIONAL GEOMETRY, 1992, 7 (02) :197-206
[7]  
LEFSCHETZ S, 1949, INTRO TOPOLOGY
[8]   UPPER-BOUNDS ON GEOMETRIC PERMUTATIONS FOR CONVEX-SETS [J].
WENGER, R .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (01) :27-33
[9]  
[No title captured]