Zinc oxide nanowire networks for macroelectronic devices

被引:46
作者
Unalan, Husnu Emrah [1 ]
Zhang, Yan [1 ]
Hiralal, Pritesh [1 ]
Dalal, Sharvari [1 ]
Chu, Daping [1 ]
Eda, Goki [2 ]
Teo, K. B. K. [1 ]
Chhowalla, Manish [2 ]
Milne, William I. [1 ]
Amaratunga, Gehan A. J. [1 ]
机构
[1] Univ Cambridge, Elect Engn Div, Dept Engn, Cambridge CB3 0FA, England
[2] Rutgers State Univ, Dept Mat Sci & Engn, Piscataway, NJ 08854 USA
关键词
II-VI semiconductors; lithography; logic devices; nanowires; percolation; semiconductor quantum wires; thin film transistors; zinc compounds; FIELD-EFFECT TRANSISTORS; THIN-FILM TRANSISTORS; ZNO NANOWIRE; FLEXIBLE ELECTRONICS; SOLAR-CELLS; TRANSPARENT; ARRAYS; GROWTH;
D O I
10.1063/1.3120561
中图分类号
O59 [应用物理学];
学科分类号
摘要
Highly transparent zinc oxide (ZnO) nanowire networks have been used as the active material in thin film transistors (TFTs) and complementary inverter devices. A systematic study on a range of networks of variable density and TFT channel length was performed. ZnO nanowire networks provide a less lithographically intense alternative to individual nanowire devices, are always semiconducting, and yield significantly higher mobilites than those achieved from currently used amorphous Si and organic TFTs. These results suggest that ZnO nanowire networks could be ideal for inexpensive large area electronics.
引用
收藏
页数:3
相关论文
共 29 条
[1]   Heterogeneous three-dimensional electronics by use of printed semiconductor nanomaterials [J].
Ahn, Jong-Hyun ;
Kim, Hoon-Sik ;
Lee, Keon Jae ;
Jeon, Seokwoo ;
Kang, Seong Jun ;
Sun, Yugang ;
Nuzzo, Ralph G. ;
Rogers, John A. .
SCIENCE, 2006, 314 (5806) :1754-1757
[2]   Transparent and flexible carbon nanotube transistors [J].
Artukovic, E ;
Kaempgen, M ;
Hecht, DS ;
Roth, S ;
GrUner, G .
NANO LETTERS, 2005, 5 (04) :757-760
[3]   Semiconductor wires and ribbons for high-performance flexible electronics [J].
Baca, Alfred J. ;
Ahn, Jong-Hyun ;
Sun, Yugang ;
Meitl, Matthew A. ;
Menard, Etienne ;
Kim, Hoon-Sik ;
Choi, Won Mook ;
Kim, Dae-Hyeong ;
Huang, Young ;
Rogers, John A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (30) :5524-5542
[4]   Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J].
Cui, Y ;
Lieber, CM .
SCIENCE, 2001, 291 (5505) :851-853
[5]   Controllable growth of vertically aligned zinc oxide nanowires using vapour deposition [J].
Dalal, S. H. ;
Baptista, D. L. ;
Teo, K. B. K. ;
Lacerda, R. G. ;
Jefferson, D. A. ;
Milne, W. I. .
NANOTECHNOLOGY, 2006, 17 (19) :4811-4818
[6]   High-performance thin-film transistors using semiconductor nanowires and nanoribbons [J].
Duan, XF ;
Niu, CM ;
Sahi, V ;
Chen, J ;
Parce, JW ;
Empedocles, S ;
Goldman, JL .
NATURE, 2003, 425 (6955) :274-278
[7]   Single-nanowire electrically driven lasers [J].
Duan, XF ;
Huang, Y ;
Agarwal, R ;
Lieber, CM .
NATURE, 2003, 421 (6920) :241-245
[8]   Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing [J].
Fan, Zhiyong ;
Ho, Johnny C. ;
Jacobson, Zachery A. ;
Yerushalmi, Roie ;
Alley, Robert L. ;
Razavi, Haleh ;
Javey, Ali .
NANO LETTERS, 2008, 8 (01) :20-25
[9]   High-speed integrated nanowire circuits [J].
Friedman, RS ;
McAlpine, MC ;
Ricketts, DS ;
Ham, D ;
Lieber, CM .
NATURE, 2005, 434 (7037) :1085-1085
[10]   General route to vertical ZnO nanowire arrays using textured ZnO seeds [J].
Greene, LE ;
Law, M ;
Tan, DH ;
Montano, M ;
Goldberger, J ;
Somorjai, G ;
Yang, PD .
NANO LETTERS, 2005, 5 (07) :1231-1236