Optimal size estimates for the inverse conductivity problem with one measurement

被引:59
作者
Alessandrini, G [1 ]
Rosset, E
Seo, JK
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34100 Trieste, Italy
[2] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
inverse conductivity problem; size estimates; Muckenhoupt weights;
D O I
10.1090/S0002-9939-99-05474-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove upper and lower estimates on the measure of an inclusion D in a conductor Omega in terms of one pair of current and potential boundary measurements. The growth rates of such estimates are essentially best possible.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 21 条
[11]   ON THE UNIQUENESS IN THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
FRIEDMAN, A ;
ISAKOV, V .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :563-579
[12]   DETECTION OF MINES BY ELECTRIC MEASUREMENTS [J].
FRIEDMAN, A .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (01) :201-212
[13]   MONOTONICITY PROPERTIES OF VARIATIONAL INTEGRALS, AP WEIGHTS AND UNIQUE CONTINUATION [J].
GAROFALO, N ;
LIN, FH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (02) :245-268
[14]  
Grisvard P., 1985, MONOGRAPHS STUDIES M, V24
[15]   ON THE INVERSE CONDUCTIVITY PROBLEM WITH ONE MEASUREMENT [J].
ISAKOV, V ;
POWELL, J .
INVERSE PROBLEMS, 1990, 6 (02) :311-318
[16]   The inverse conductivity problem with one measurement: Stability and estimation of size [J].
Kang, HB ;
Seo, JK ;
Sheen, DW .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (06) :1389-1405
[17]   THE NEUMANN PROBLEM FOR ELLIPTIC-EQUATIONS WITH NONSMOOTH COEFFICIENTS [J].
KENIG, CE ;
PIPHER, J .
INVENTIONES MATHEMATICAE, 1993, 113 (03) :447-509
[18]  
Kenig CE., 1994, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems
[19]  
Lions J-L., 1972, NONHOMOGENEOUS BOUND
[20]   ON A SMALL PERTURBATION IN THE 2-DIMENSIONAL INVERSE CONDUCTIVITY PROBLEM [J].
POWELL, J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 175 (01) :292-304