Grobner bases and multidimensional FIR multirate systems

被引:37
作者
Park, H
Kalker, T
Vetterli, M
机构
[1] PHILIPS RES LABS,NL-5656 AA EINDHOVEN,NETHERLANDS
[2] UNIV CALIF BERKELEY,DEPT ELECT ENGN & COMP SCI,BERKELEY,CA 94720
关键词
grobner bases; multirate systems; polyphase representation;
D O I
10.1023/A:1008299221759
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The polyphase representation with respect to sampling lattices in multidimensional (M-D) multirate signal processing allows us to identify perfect reconstruction (PR) filter banks with unimodular Laurent polynomial matrices, and various problems in the design and analysis of invertible MD multirate systems can be algebraically formulated with the aid of this representation. While the resulting algebraic problems can be solved in one dimension (1-D) by the Euclidean Division Algorithm, we show that Grobner bases offers an effective solution to them in the M-D case.
引用
收藏
页码:11 / 30
页数:20
相关论文
共 24 条
[11]  
GRUELE G, 1995, SINGULAR USER MANUAL
[12]   ON A THEOREM OF CASTELNUOVO, AND THE EQUATIONS DEFINING SPACE-CURVES [J].
GRUSON, L ;
LAZARSFELD, R ;
PESKINE, C .
INVENTIONES MATHEMATICAE, 1983, 72 (03) :491-506
[13]   NOTE ON A LINEAR-SYSTEM OCCURRING IN PERFECT RECONSTRUCTION [J].
JANSSEN, AJEM .
SIGNAL PROCESSING, 1989, 18 (01) :109-114
[14]  
KALKER T, 1995, P ICASSP 95
[15]   ALGORITHMS FOR THE QUILLEN-SUSLIN THEOREM [J].
LOGAR, A ;
STURMFELS, B .
JOURNAL OF ALGEBRA, 1992, 145 (01) :231-239
[16]  
Martin V., 1995, WAVELETS SUBBAND COD
[17]  
Mishra B., 1993, TEXTS MONOGRAPHS COM
[18]  
Park H., 1995, THESIS U CALIFORNIA
[19]   AN ALGORITHMIC PROOF OF SUSLINS STABILITY THEOREM FOR POLYNOMIAL-RINGS [J].
PARK, HJ ;
WOODBURN, C .
JOURNAL OF ALGEBRA, 1995, 178 (01) :277-298
[20]  
Vaidyanathan P. P., 1993, MULTIRATE SYSTEMS FI